
\[A,B\] and \[C\] are any three events. If \[P\left( S \right)\] denotes the probability of \[S\] happening. Then what is the value of \[P\left( {A \cap \left( {BUC} \right)} \right)\]?
A. \[P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right)\]
B. \[P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( B \right)P\left( C \right)\]
C. \[P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {A \cap B \cap C} \right)\]
D. None of these
Answer
162.6k+ views
Hint: First we will apply the formula \[\left( {A \cap \left( {B \cup C} \right)} \right) = \left( {A \cap B} \right) \cup \left( {A \cap C} \right)\]in \[P\left( {A \cap \left( {B \cup C} \right)} \right)\]. Then we will apply \[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\] in \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right)\]. After that we will apply \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\] to get desire result.
Formula used:
1. \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\]
2. \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\]
3. \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Complete step by step solution:
Given: \[A,B\] and \[C\] are any three events.
Let’s simplify the probability \[P\left( {A \cap \left( {BUC} \right)} \right)\].
Now apply the formula \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {\left( {A \cap B} \right)U\left( {A \cap C} \right)} \right)\]
Expand the above equation using the formula \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\]
Now apply the formula \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {A \cap B \cap C} \right)\]
Hence the correct option is C.
Note: Sometimes students apply the formula \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right)\]. But the correct formula is \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\].
Formula used:
1. \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\]
2. \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\]
3. \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Complete step by step solution:
Given: \[A,B\] and \[C\] are any three events.
Let’s simplify the probability \[P\left( {A \cap \left( {BUC} \right)} \right)\].
Now apply the formula \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {\left( {A \cap B} \right)U\left( {A \cap C} \right)} \right)\]
Expand the above equation using the formula \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\]
Now apply the formula \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {A \cap B \cap C} \right)\]
Hence the correct option is C.
Note: Sometimes students apply the formula \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right)\]. But the correct formula is \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
