
\[A,B\] and \[C\] are any three events. If \[P\left( S \right)\] denotes the probability of \[S\] happening. Then what is the value of \[P\left( {A \cap \left( {BUC} \right)} \right)\]?
A. \[P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right)\]
B. \[P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( B \right)P\left( C \right)\]
C. \[P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {A \cap B \cap C} \right)\]
D. None of these
Answer
232.8k+ views
Hint: First we will apply the formula \[\left( {A \cap \left( {B \cup C} \right)} \right) = \left( {A \cap B} \right) \cup \left( {A \cap C} \right)\]in \[P\left( {A \cap \left( {B \cup C} \right)} \right)\]. Then we will apply \[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\] in \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right)\]. After that we will apply \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\] to get desire result.
Formula used:
1. \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\]
2. \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\]
3. \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Complete step by step solution:
Given: \[A,B\] and \[C\] are any three events.
Let’s simplify the probability \[P\left( {A \cap \left( {BUC} \right)} \right)\].
Now apply the formula \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {\left( {A \cap B} \right)U\left( {A \cap C} \right)} \right)\]
Expand the above equation using the formula \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\]
Now apply the formula \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {A \cap B \cap C} \right)\]
Hence the correct option is C.
Note: Sometimes students apply the formula \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right)\]. But the correct formula is \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\].
Formula used:
1. \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\]
2. \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\]
3. \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Complete step by step solution:
Given: \[A,B\] and \[C\] are any three events.
Let’s simplify the probability \[P\left( {A \cap \left( {BUC} \right)} \right)\].
Now apply the formula \[\left( {A \cap \left( {BUC} \right)} \right) = \left( {A \cap B} \right)U\left( {A \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {\left( {A \cap B} \right)U\left( {A \cap C} \right)} \right)\]
Expand the above equation using the formula \[P\left( {AUB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\]
Now apply the formula \[\left( {A \cap B} \right) \cap \left( {A \cap C} \right) = \left( {A \cap B \cap C} \right)\].
\[P\left( {A \cap \left( {BUC} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {A \cap B \cap C} \right)\]
Hence the correct option is C.
Note: Sometimes students apply the formula \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right)\]. But the correct formula is \[P\left( {\left( {A \cap B} \right) \cup \left( {A \cap C} \right)} \right) = P\left( {A \cap B} \right) + P\left( {A \cap C} \right) - P\left( {\left( {A \cap B} \right) \cap \left( {A \cap C} \right)} \right)\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

