Answer
Verified
87.3k+ views
Hint: We know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\]. Now we have to calculate \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\]. From the values of \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\] we can get the vector \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now we have to substitute \[t=2\]. This will give us the tangent vector of \[f(x,y,z,t)=0\] at \[t=2\]. We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now by using this concept, we can find the uni-modular tangent vector of curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\].
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A roller of mass 300kg and of radius 50cm lying on class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The ratio of speed of sound in Hydrogen to that in class 11 physics JEE_MAIN