
A uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is
\[\begin{align}
& (\text{A) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (B\text{) }\dfrac{1}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}-\overset{\scriptscriptstyle\rightharpoonup}{j}-\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (C\text{) }\dfrac{1}{3}\left( 2\overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
& (D\text{) }\dfrac{2}{3}\left( \overset{\scriptscriptstyle\rightharpoonup}{i}+\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k} \right) \\
\end{align}\]
Answer
232.8k+ views
Hint: We know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\]. Now we have to calculate \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\]. From the values of \[\dfrac{dx}{dt},\dfrac{dy}{dt},\dfrac{dz}{dt}\] we can get the vector \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now we have to substitute \[t=2\]. This will give us the tangent vector of \[f(x,y,z,t)=0\] at \[t=2\]. We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Now by using this concept, we can find the uni-modular tangent vector of curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\].
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Complete step-by-step solution:
Before solving the question, we should know that if \[f(x,y,z,t)=0\] represents a curve then the tangent vector of \[f(x,y,z,t)=0\] is represented by \[\dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}\].
From the question, we were given the equation of curve is \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Let us consider
\[\begin{align}
& x={{t}^{2}}+2......(1) \\
& y=4t-5.......(2) \\
& z=2{{t}^{2}}-6t......(3) \\
\end{align}\]
Now let us differentiate equation (1) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( {{t}^{2}}+2 \right) \\
& \Rightarrow \dfrac{dx}{dt}=2t.....(4) \\
\end{align}\]
Now let us differentiate equation (2) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( 4t-5 \right) \\
& \Rightarrow \dfrac{dy}{dt}=4.....(5) \\
\end{align}\]
Now let us differentiate equation (3) on both sides, then we get
\[\begin{align}
& \Rightarrow \dfrac{dz}{dt}=\dfrac{d}{dt}\left( 2{{t}^{2}}-6t \right) \\
& \Rightarrow \dfrac{dz}{dt}=4t-6.....(6) \\
\end{align}\]
From equation (4), equation (5) and equation (6), we can get the tangent vector of the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\].
Now we have to find the equation of the tangent vector.
\[\Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2t \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4t-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k}.....(7)\]
Now we have to find the equation of the tangent at \[t=2\].
So, now we have to substitute \[t=2\] in equation (7), then we get
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( 2(2) \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( 4(2)-6 \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \dfrac{dx}{dt}\overset{\scriptscriptstyle\rightharpoonup}{i}+\dfrac{dy}{dt}\overset{\scriptscriptstyle\rightharpoonup}{j}+\dfrac{dz}{dt}\overset{\scriptscriptstyle\rightharpoonup}{k}=4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}.....(8) \\
\end{align}\]
Now we have to find the unimodular vector of equation (8).
We know that the unit vector of \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\] is \[\left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}\].
Now let us compare \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] with \[a\overset{\scriptscriptstyle\rightharpoonup}{i}+b\overset{\scriptscriptstyle\rightharpoonup}{j}+c\overset{\scriptscriptstyle\rightharpoonup}{k}\]. Then we get
\[\begin{align}
& a=4......(9) \\
& b=4......(10) \\
& c=2.......(11) \\
\end{align}\]
Now from equation (9), equation (10) and equation (11) we have to calculate the value of \[\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
\[\begin{align}
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{4}^{2}}+{{4}^{2}}+{{2}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{36} \\
& \Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=6.....(12) \\
\end{align}\]
Now we have to find the unit tangent vector.
From equation (9), equation (10), equation (11) and equation (12), we get
\[\begin{align}
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{4}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{2}{6} \right)\overset{\scriptscriptstyle\rightharpoonup}{k} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}}{6} \\
& \Rightarrow \left( \dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{i}+\left( \dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{j}+\left( \dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right)\overset{\scriptscriptstyle\rightharpoonup}{k}=\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}......(13) \\
\end{align}\]
From equation we can say that uni-modular tangent vector on the curve \[x={{t}^{2}}+2,y=4t-5,z=2{{t}^{2}}-6t\] at \[t=2\] is \[\dfrac{2\overset{\scriptscriptstyle\rightharpoonup}{i}+2\overset{\scriptscriptstyle\rightharpoonup}{j}+\overset{\scriptscriptstyle\rightharpoonup}{k}}{3}\].
Hence, option A is correct.
Note: Students may do the solution up to equation (8) and they may conclude that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] is the tangent vector. They may think that this is the correct answer but this will give us the wrong answer. The reason is that in the question it was given that to find the uni-modular vector. We know that \[4\overset{\scriptscriptstyle\rightharpoonup}{i}+4\overset{\scriptscriptstyle\rightharpoonup}{j}+2\overset{\scriptscriptstyle\rightharpoonup}{k}\] will not represents a uni -modular vector. So, students should follow the question properly and then proceed through the solution.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

