
A toy car rolls down the inclined plane as shown in the above figure. It loops at the bottom. What is the relation between H and h?

A. \[\dfrac{H}{h} = 2\]
B. \[\dfrac{H}{h} = 3\]
C. \[\dfrac{H}{h} = 4\]
D. \[\dfrac{H}{h} = 5\]
Answer
163.2k+ views
Hint:When the path of the motion is frictionless then we use conservation of mechanical energy. To loop throughout the minimum velocity at the top of the loop be such that the produced centrifugal force balances the weight of the body.
Formula used:
\[K = \dfrac{{m{v^2}}}{2}\]
Here K is the kinetic energy of mass m moving with velocity v.
\[U = mgh\]
Here U is the gravitational potential energy of mass m at height h and g is the acceleration due to gravity.
Complete step by step solution:
The initial velocity of the car at height H is 0 m/s as it is at rest. Let the velocity of the car at the lowest point of the loop is \[v\]. Then using the conservation of mechanical energy of the car, the total energy of the car at height H will be conserved and will be equal to the mechanical energy of the car at the lowest point of the loop.

Image: The toy car rolls down
\[{E_{top}} = {E_{bottom}}\]
\[\Rightarrow {\left( {U + K} \right)_{top}} = {\left( {U + K} \right)_{bottom}}\]
\[\Rightarrow mgH + \dfrac{{m \times {{\left( 0 \right)}^2}}}{2} = mg \times \left( 0 \right) + \dfrac{{m \times {v^2}}}{2}\]
\[\Rightarrow v = \sqrt {2gH} \ldots \left( i \right)\]
As we know that to complete the loop the minimum velocity needed at the lowest point of the loop is equal to \[\sqrt {5gr} \]
So,
\[v = \sqrt {5gr} \ldots \left( {ii} \right)\]
From both the equations, we get
\[\sqrt {2gH} = \sqrt {5gr} \Rightarrow H = \dfrac{{5r}}{2} \ldots \left( {iii} \right)\]
From the shown figure,
\[H = h + 2r\]
Substituting 3rd equation, we get
\[h = \dfrac{{5r}}{2} - 2r \\
\Rightarrow h = \dfrac{r}{2} \ldots \ldots \left( {iv} \right)\]
From 3rd and 4th equations,
\[\dfrac{H}{h} = \dfrac{{\left( {\dfrac{{5r}}{2}} \right)}}{{\left( {\dfrac{r}{2}} \right)}} = 5\]
\[\therefore \dfrac{H}{h} = 5\]
Therefore, the correct option is D.
Note: We should be careful about the nature of the path of motion. If the path is frictional then the mechanical energy is lost as work done by the friction. The total mechanical energy of a system is conserved in accordance with the principle of mechanical energy conservation, which states that energy cannot be created or destroyed and can only be internally transformed from one form to another if the forces acting on the system are conservative in nature.
Formula used:
\[K = \dfrac{{m{v^2}}}{2}\]
Here K is the kinetic energy of mass m moving with velocity v.
\[U = mgh\]
Here U is the gravitational potential energy of mass m at height h and g is the acceleration due to gravity.
Complete step by step solution:
The initial velocity of the car at height H is 0 m/s as it is at rest. Let the velocity of the car at the lowest point of the loop is \[v\]. Then using the conservation of mechanical energy of the car, the total energy of the car at height H will be conserved and will be equal to the mechanical energy of the car at the lowest point of the loop.

Image: The toy car rolls down
\[{E_{top}} = {E_{bottom}}\]
\[\Rightarrow {\left( {U + K} \right)_{top}} = {\left( {U + K} \right)_{bottom}}\]
\[\Rightarrow mgH + \dfrac{{m \times {{\left( 0 \right)}^2}}}{2} = mg \times \left( 0 \right) + \dfrac{{m \times {v^2}}}{2}\]
\[\Rightarrow v = \sqrt {2gH} \ldots \left( i \right)\]
As we know that to complete the loop the minimum velocity needed at the lowest point of the loop is equal to \[\sqrt {5gr} \]
So,
\[v = \sqrt {5gr} \ldots \left( {ii} \right)\]
From both the equations, we get
\[\sqrt {2gH} = \sqrt {5gr} \Rightarrow H = \dfrac{{5r}}{2} \ldots \left( {iii} \right)\]
From the shown figure,
\[H = h + 2r\]
Substituting 3rd equation, we get
\[h = \dfrac{{5r}}{2} - 2r \\
\Rightarrow h = \dfrac{r}{2} \ldots \ldots \left( {iv} \right)\]
From 3rd and 4th equations,
\[\dfrac{H}{h} = \dfrac{{\left( {\dfrac{{5r}}{2}} \right)}}{{\left( {\dfrac{r}{2}} \right)}} = 5\]
\[\therefore \dfrac{H}{h} = 5\]
Therefore, the correct option is D.
Note: We should be careful about the nature of the path of motion. If the path is frictional then the mechanical energy is lost as work done by the friction. The total mechanical energy of a system is conserved in accordance with the principle of mechanical energy conservation, which states that energy cannot be created or destroyed and can only be internally transformed from one form to another if the forces acting on the system are conservative in nature.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
