
A square loop of a side ‘a’ is placed at ‘a’ distance away from a long wire carrying a current ${I_1}$. If the loop carries as current ${I_2}$ as shown in figure. Then the nature of the force and its amount is:

$\left( A \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}\], attractive
$\left( B \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{4\pi }}\], attractive
$\left( C \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{4\pi }}\], repulsive
$\left( D \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{4\pi a}}\], repulsive
Answer
126.6k+ views
Hint: The concept of the Left-hand rule can be used to solve this problem. When a current-carrying conductor/wire is placed in a magnetic field, a force is exerted on the wire.
Hence Fleming gave a simple rule to determine the direction of force acting on a current-carrying conductor/wire placed in a magnetic field. This can be used to calculate the force of nature.
Complete step by step answer:
If the direction of electric currents flowing in two parallel straight conductors is the same then they will attract each other.
If the direction of electric currents flowing two parallel straight conductors are opposite then they repel each other.
In this question, current $({I_1})$ produces a magnetic field around it which at any point on current $({I_2})$carrying wire is,
${B_1} = \dfrac{{{\mu _0}{I_1}}}{{2\pi a}}$ Directed inwards perpendicular to planes or wires
So current $({I_2})$ carrying wire then experiences a force due to its magnetic field which on its length $l$ given by,
$\Rightarrow F = {I_2}l{B_1}\sin {90^ \circ }$
$\Rightarrow F = {I_2}l \times \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}$
Or,\[\] $F = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}l$
So force per unit length than the two wires exert on each other is,
$\Rightarrow f = \dfrac{F}{L}$
Hence \[f = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}\]
The answer will be $\left( A \right),$ thus nullifying other options.
Note: The strong force of nature is considered as the most powerful force. The electric, weak, and gravitational forces are followed in decreasing order.
Despite its strength, because of its exceedingly small range, the strong force does not manifest itself in the macroscopic universe.
When a current-carrying wire is placed in a magnetic field of another current-carrying wire, it experiences a magnetic force.
The direction of the force depends on the direction of the magnetic field as well as the current and is perpendicular to it.
Hence Fleming gave a simple rule to determine the direction of force acting on a current-carrying conductor/wire placed in a magnetic field. This can be used to calculate the force of nature.
Complete step by step answer:
If the direction of electric currents flowing in two parallel straight conductors is the same then they will attract each other.
If the direction of electric currents flowing two parallel straight conductors are opposite then they repel each other.
In this question, current $({I_1})$ produces a magnetic field around it which at any point on current $({I_2})$carrying wire is,
${B_1} = \dfrac{{{\mu _0}{I_1}}}{{2\pi a}}$ Directed inwards perpendicular to planes or wires
So current $({I_2})$ carrying wire then experiences a force due to its magnetic field which on its length $l$ given by,
$\Rightarrow F = {I_2}l{B_1}\sin {90^ \circ }$
$\Rightarrow F = {I_2}l \times \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}$
Or,\[\] $F = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}l$
So force per unit length than the two wires exert on each other is,
$\Rightarrow f = \dfrac{F}{L}$
Hence \[f = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}\]
The answer will be $\left( A \right),$ thus nullifying other options.
Note: The strong force of nature is considered as the most powerful force. The electric, weak, and gravitational forces are followed in decreasing order.
Despite its strength, because of its exceedingly small range, the strong force does not manifest itself in the macroscopic universe.
When a current-carrying wire is placed in a magnetic field of another current-carrying wire, it experiences a magnetic force.
The direction of the force depends on the direction of the magnetic field as well as the current and is perpendicular to it.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main
