
A radioisotope has a half-life of 75 years. The fraction of the atoms of this material that would decay in 150 years will be
A. 66.6%
B. 85.5%
C. 62.5%
D. 75%
Answer
162.9k+ views
Hint:This problem can be solved by using the concept of radioactivity. We have to use the relation between half life and number of half life. Half-life is the time interval during which half of the atoms of the radioactive sample decay.
Formula Used:
The number of radioactive nuclei remaining after n half-life = \[\dfrac{{{N_{_0}}}}{{{2^n}}}\].
Number of half-life, $n = \dfrac{t}{{{T_{1/2}}}}$
Where ${T_{1/2}}$ = half-life, ${N_0}$= Initial number of nuclei, t = time and n = number of half-lives.
Complete step by step solution:
The half-life of radioisotope is given. That is ${T_{1/2}} = 75$ years. Also t = 150 years.
Number of half-life, $n = \dfrac{t}{{{T_{1/2}}}}$
\[n = \dfrac{{150}}{{75}} = 2\]
Fraction of atoms decayed = \[{N_0} - \left( {\dfrac{{{N_0}}}{{{2^2}}}} \right) = \dfrac{{2{N_0} - {N_0}}}{4} = \dfrac{3}{4} = 0.75 \]
In terms of percentage it is 75%.
Hence, the correct option is option D.
Additional Information: The equation for half-life is given below.
${T_{1/2}} = \dfrac{{0.693}}{\lambda }$
Where, ${T_{1/2}}$= Half-Life and $\lambda $= Disintegration constant.
The law of radioactive decay states, “If a radioactive sample contains N nuclei, at a given instant the ratio of the radioactive decay ($ - \dfrac{{dN}}{{dt}}$) to the number of nuclei present at that instant is a constant.”
\[\dfrac{{( - \dfrac{{dN}}{{dt}})}}{N} = \lambda \\\]
\[\Rightarrow \dfrac{{dN}}{{dt}} = - \lambda N\]
The equation can be re-written as,
${N_t} = {N_0}{e^{ - \lambda t}}$
Where, ${N_t}$ = Number of nuclei present after some time t
${N_0}$= Initial number of nuclei present
\[\lambda \]= Disintegration constant
t = Time
Note: An atom that has become stable in terms of energy by emitting radiation will no longer emit radiation. The amount of radioactive nuclei decreases over time and hence the radioactivity weakens. Radioactive decay is a statistical process.
Formula Used:
The number of radioactive nuclei remaining after n half-life = \[\dfrac{{{N_{_0}}}}{{{2^n}}}\].
Number of half-life, $n = \dfrac{t}{{{T_{1/2}}}}$
Where ${T_{1/2}}$ = half-life, ${N_0}$= Initial number of nuclei, t = time and n = number of half-lives.
Complete step by step solution:
The half-life of radioisotope is given. That is ${T_{1/2}} = 75$ years. Also t = 150 years.
Number of half-life, $n = \dfrac{t}{{{T_{1/2}}}}$
\[n = \dfrac{{150}}{{75}} = 2\]
Fraction of atoms decayed = \[{N_0} - \left( {\dfrac{{{N_0}}}{{{2^2}}}} \right) = \dfrac{{2{N_0} - {N_0}}}{4} = \dfrac{3}{4} = 0.75 \]
In terms of percentage it is 75%.
Hence, the correct option is option D.
Additional Information: The equation for half-life is given below.
${T_{1/2}} = \dfrac{{0.693}}{\lambda }$
Where, ${T_{1/2}}$= Half-Life and $\lambda $= Disintegration constant.
The law of radioactive decay states, “If a radioactive sample contains N nuclei, at a given instant the ratio of the radioactive decay ($ - \dfrac{{dN}}{{dt}}$) to the number of nuclei present at that instant is a constant.”
\[\dfrac{{( - \dfrac{{dN}}{{dt}})}}{N} = \lambda \\\]
\[\Rightarrow \dfrac{{dN}}{{dt}} = - \lambda N\]
The equation can be re-written as,
${N_t} = {N_0}{e^{ - \lambda t}}$
Where, ${N_t}$ = Number of nuclei present after some time t
${N_0}$= Initial number of nuclei present
\[\lambda \]= Disintegration constant
t = Time
Note: An atom that has become stable in terms of energy by emitting radiation will no longer emit radiation. The amount of radioactive nuclei decreases over time and hence the radioactivity weakens. Radioactive decay is a statistical process.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main
