
A proton of energy 200 MeV enters the magnetic field of 5 T. If direction of field is from south to north and motion is upward, the force acting on it will be
A. Zero
B. \(1.6 \times {10^{ - 10}}N\)
C. \(3.2 \times {10^{ - 18}}N\)
D. \(1.6 \times {10^{ - 6}}N\)
Answer
225k+ views
Hint: From the given energy of the proton we find the speed of the proton. When a proton is moving in the magnetic field then there is magnetic force acting on it. The magnitude of the magnetic force is proportional to the vector product of the velocity and the magnetic field.
Formula used:
\(\overrightarrow F = q\left( {\vec v \times \vec B} \right)\), here \(\vec F\)is the magnetic force vector, \(\vec v\)is the velocity of the charged particle and \(\vec B\)is the magnetic field in the region.
\(K = \frac{{m{v^2}}}{2}\), here K is the kinetic energy of the body having mass m moving with speed v.
Complete answer:
The energy of the proton is given as 200MeV
We convert the given energy into joules.
\(K = 200 \times {10^6} \times 1.6 \times {10^{ - 19}}J\)
\(K = 3.2 \times {10^{ - 11}}J\)
The mass of the proton is \(m = 1.67 \times {10^{ - 27}}Kg\)
Let the speed of the proton is v.
Then the kinetic energy of the proton is \(K = \frac{{m{v^2}}}{2}\)
\(\frac{{1.67 \times {{10}^{ - 27}}{v^2}}}{2} = 3.2 \times {10^{ - 11}}\)
\(v = \sqrt {\frac{{2 \times 3.2 \times {{10}^{ - 11}}}}{{1.67 \times {{10}^{ - 27}}}}} m/s\)
\(v = 1.96 \times {10^8}m/s\)
We assumed the Cartesian coordinate system equivalence to the geometric directions.
The magnetic field vector is \(\vec B = \left( {5T} \right)\hat j\)
The velocity vector is \(\vec v = \left( {1.96 \times {{10}^8}m/s} \right)\hat k\)
The magnetic force acting on the proton is,
\(\vec F = q\left( {\vec v \times \vec B} \right)\)
\(\vec F = 1.6 \times {10^{ - 19}}\left( {\left( {1.96 \times {{10}^8}\hat k} \right) \times \left( {5\hat j} \right)} \right)N\)
\(\vec F = \left( {1.57 \times {{10}^{ - 10}}N} \right)\hat- i\)
\(\vec F \approx \left( -{1.6 \times {{10}^{ - 10}}N} \right)\hat i\)
Hence, the magnitude of the magnetic force on the proton is approximately \(1.6 \times {10^{ - 10}}N\)
Therefore, the correct option is (B).
Note:We should be careful about the energy of the proton. We should consider the classical nature of the proton otherwise Lorentz's force law will not be valid for the subatomic particles like electrons and protons moving in the magnetic field.
Formula used:
\(\overrightarrow F = q\left( {\vec v \times \vec B} \right)\), here \(\vec F\)is the magnetic force vector, \(\vec v\)is the velocity of the charged particle and \(\vec B\)is the magnetic field in the region.
\(K = \frac{{m{v^2}}}{2}\), here K is the kinetic energy of the body having mass m moving with speed v.
Complete answer:
The energy of the proton is given as 200MeV
We convert the given energy into joules.
\(K = 200 \times {10^6} \times 1.6 \times {10^{ - 19}}J\)
\(K = 3.2 \times {10^{ - 11}}J\)
The mass of the proton is \(m = 1.67 \times {10^{ - 27}}Kg\)
Let the speed of the proton is v.
Then the kinetic energy of the proton is \(K = \frac{{m{v^2}}}{2}\)
\(\frac{{1.67 \times {{10}^{ - 27}}{v^2}}}{2} = 3.2 \times {10^{ - 11}}\)
\(v = \sqrt {\frac{{2 \times 3.2 \times {{10}^{ - 11}}}}{{1.67 \times {{10}^{ - 27}}}}} m/s\)
\(v = 1.96 \times {10^8}m/s\)
We assumed the Cartesian coordinate system equivalence to the geometric directions.
The magnetic field vector is \(\vec B = \left( {5T} \right)\hat j\)
The velocity vector is \(\vec v = \left( {1.96 \times {{10}^8}m/s} \right)\hat k\)
The magnetic force acting on the proton is,
\(\vec F = q\left( {\vec v \times \vec B} \right)\)
\(\vec F = 1.6 \times {10^{ - 19}}\left( {\left( {1.96 \times {{10}^8}\hat k} \right) \times \left( {5\hat j} \right)} \right)N\)
\(\vec F = \left( {1.57 \times {{10}^{ - 10}}N} \right)\hat- i\)
\(\vec F \approx \left( -{1.6 \times {{10}^{ - 10}}N} \right)\hat i\)
Hence, the magnitude of the magnetic force on the proton is approximately \(1.6 \times {10^{ - 10}}N\)
Therefore, the correct option is (B).
Note:We should be careful about the energy of the proton. We should consider the classical nature of the proton otherwise Lorentz's force law will not be valid for the subatomic particles like electrons and protons moving in the magnetic field.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

