
A proton of energy 200 MeV enters the magnetic field of 5 T. If direction of field is from south to north and motion is upward, the force acting on it will be
A. Zero
B. \(1.6 \times {10^{ - 10}}N\)
C. \(3.2 \times {10^{ - 18}}N\)
D. \(1.6 \times {10^{ - 6}}N\)
Answer
163.8k+ views
Hint: From the given energy of the proton we find the speed of the proton. When a proton is moving in the magnetic field then there is magnetic force acting on it. The magnitude of the magnetic force is proportional to the vector product of the velocity and the magnetic field.
Formula used:
\(\overrightarrow F = q\left( {\vec v \times \vec B} \right)\), here \(\vec F\)is the magnetic force vector, \(\vec v\)is the velocity of the charged particle and \(\vec B\)is the magnetic field in the region.
\(K = \frac{{m{v^2}}}{2}\), here K is the kinetic energy of the body having mass m moving with speed v.
Complete answer:
The energy of the proton is given as 200MeV
We convert the given energy into joules.
\(K = 200 \times {10^6} \times 1.6 \times {10^{ - 19}}J\)
\(K = 3.2 \times {10^{ - 11}}J\)
The mass of the proton is \(m = 1.67 \times {10^{ - 27}}Kg\)
Let the speed of the proton is v.
Then the kinetic energy of the proton is \(K = \frac{{m{v^2}}}{2}\)
\(\frac{{1.67 \times {{10}^{ - 27}}{v^2}}}{2} = 3.2 \times {10^{ - 11}}\)
\(v = \sqrt {\frac{{2 \times 3.2 \times {{10}^{ - 11}}}}{{1.67 \times {{10}^{ - 27}}}}} m/s\)
\(v = 1.96 \times {10^8}m/s\)
We assumed the Cartesian coordinate system equivalence to the geometric directions.
The magnetic field vector is \(\vec B = \left( {5T} \right)\hat j\)
The velocity vector is \(\vec v = \left( {1.96 \times {{10}^8}m/s} \right)\hat k\)
The magnetic force acting on the proton is,
\(\vec F = q\left( {\vec v \times \vec B} \right)\)
\(\vec F = 1.6 \times {10^{ - 19}}\left( {\left( {1.96 \times {{10}^8}\hat k} \right) \times \left( {5\hat j} \right)} \right)N\)
\(\vec F = \left( {1.57 \times {{10}^{ - 10}}N} \right)\hat- i\)
\(\vec F \approx \left( -{1.6 \times {{10}^{ - 10}}N} \right)\hat i\)
Hence, the magnitude of the magnetic force on the proton is approximately \(1.6 \times {10^{ - 10}}N\)
Therefore, the correct option is (B).
Note:We should be careful about the energy of the proton. We should consider the classical nature of the proton otherwise Lorentz's force law will not be valid for the subatomic particles like electrons and protons moving in the magnetic field.
Formula used:
\(\overrightarrow F = q\left( {\vec v \times \vec B} \right)\), here \(\vec F\)is the magnetic force vector, \(\vec v\)is the velocity of the charged particle and \(\vec B\)is the magnetic field in the region.
\(K = \frac{{m{v^2}}}{2}\), here K is the kinetic energy of the body having mass m moving with speed v.
Complete answer:
The energy of the proton is given as 200MeV
We convert the given energy into joules.
\(K = 200 \times {10^6} \times 1.6 \times {10^{ - 19}}J\)
\(K = 3.2 \times {10^{ - 11}}J\)
The mass of the proton is \(m = 1.67 \times {10^{ - 27}}Kg\)
Let the speed of the proton is v.
Then the kinetic energy of the proton is \(K = \frac{{m{v^2}}}{2}\)
\(\frac{{1.67 \times {{10}^{ - 27}}{v^2}}}{2} = 3.2 \times {10^{ - 11}}\)
\(v = \sqrt {\frac{{2 \times 3.2 \times {{10}^{ - 11}}}}{{1.67 \times {{10}^{ - 27}}}}} m/s\)
\(v = 1.96 \times {10^8}m/s\)
We assumed the Cartesian coordinate system equivalence to the geometric directions.
The magnetic field vector is \(\vec B = \left( {5T} \right)\hat j\)
The velocity vector is \(\vec v = \left( {1.96 \times {{10}^8}m/s} \right)\hat k\)
The magnetic force acting on the proton is,
\(\vec F = q\left( {\vec v \times \vec B} \right)\)
\(\vec F = 1.6 \times {10^{ - 19}}\left( {\left( {1.96 \times {{10}^8}\hat k} \right) \times \left( {5\hat j} \right)} \right)N\)
\(\vec F = \left( {1.57 \times {{10}^{ - 10}}N} \right)\hat- i\)
\(\vec F \approx \left( -{1.6 \times {{10}^{ - 10}}N} \right)\hat i\)
Hence, the magnitude of the magnetic force on the proton is approximately \(1.6 \times {10^{ - 10}}N\)
Therefore, the correct option is (B).
Note:We should be careful about the energy of the proton. We should consider the classical nature of the proton otherwise Lorentz's force law will not be valid for the subatomic particles like electrons and protons moving in the magnetic field.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE
