
A proton is moving along the Z-axis in a magnetic field. The magnetic field is along the X axis. The proton will experience a force along
A. X-axis
B. Y-axis
C. Z-axis
D. Negative Z-axis
Answer
232.8k+ views
Hint: The force experienced by a point charge due to an electric and magnetic force due to electromagnetic forces is given by Lorentz force. It is also known as electromagnetic force.
Formula used:
The magnetic force is proportional to electric charge ‘q’ of the particle and to the magnitude of vector cross product of velocity ‘v’ and the magnetic field ‘B’.
Mathematically it is written as
\[F = q(\overrightarrow v \times \overrightarrow B )\]
Complete answer:
When a charged particle moves in a magnetic field it experiences a force. Given that the velocity of the proton is along Z-axis and magnetic field is along X-axis, therefore, the direction of force on a charged particle will be given by
\[F = \widehat v \times \widehat B\]
\[F = ( + \widehat k) \times ( + \widehat i)\]
\[F = + \widehat j\]
That means the moving proton will experience a force along the Y-axis.
Hence, Option B is the correct answer.
Note: The direction of Lorentz force acting on the charged particle is perpendicular to the magnetic field and the charge moving which can easily be explained by Lorentz Force Right Hand Rule. If the electric field, magnetic field and direction of velocity are parallel, the charge is moving in rectilinear motion. But if the direction of velocity is perpendicular to electric and magnetic fields and both fields are parallel to each other, then the charge will be moving due to the electric field and hence move in a circular motion.
Formula used:
The magnetic force is proportional to electric charge ‘q’ of the particle and to the magnitude of vector cross product of velocity ‘v’ and the magnetic field ‘B’.
Mathematically it is written as
\[F = q(\overrightarrow v \times \overrightarrow B )\]
Complete answer:
When a charged particle moves in a magnetic field it experiences a force. Given that the velocity of the proton is along Z-axis and magnetic field is along X-axis, therefore, the direction of force on a charged particle will be given by
\[F = \widehat v \times \widehat B\]
\[F = ( + \widehat k) \times ( + \widehat i)\]
\[F = + \widehat j\]
That means the moving proton will experience a force along the Y-axis.
Hence, Option B is the correct answer.
Note: The direction of Lorentz force acting on the charged particle is perpendicular to the magnetic field and the charge moving which can easily be explained by Lorentz Force Right Hand Rule. If the electric field, magnetic field and direction of velocity are parallel, the charge is moving in rectilinear motion. But if the direction of velocity is perpendicular to electric and magnetic fields and both fields are parallel to each other, then the charge will be moving due to the electric field and hence move in a circular motion.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

