Answer
Verified
103.5k+ views
Hint: Frequency is defined as the number of waves that pass through a fixed point in the unit of time. It is also defined as the number of oscillations per unit of time. The unit of frequency is Hertz.
Complete step by step solution:
Given data:
Speed of a police car, ${v_s} = 22m/s$
Frequency of the sound horn, ${n_{car}} = 176Hz$
Frequency of the siren, ${n_{siren}} = 165Hz$
Speed of the sound, v = 330 m/s
Speed of the motorcyclist, ${v_m}$ =?
It is given that in the first case the police car which is a source of sound is moving at a speed ${v_s}$and is approaching a motorcycle (observer) which in turn is moving away from the police car with a speed of ${v_m}$.
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n' = {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right)\_\_\_\_\_\_\_\left( 1 \right)$
Again in the second case the motorcyclist, an observer is approaching a stationary siren, source at a speed of ${v_m}$
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n'' = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)\_\_\_\_\_\_\_\left( 2 \right)$
It is given that the motorcyclist does not observe any beats and this is possible only when the difference in the frequencies heard by the motorcyclist is zero.
Thus $n' - n'' = 0$
$ \Rightarrow n' = n''$
Substituting the values of $n'$ and $n''$ from the equations 1 and 2, we get,
$\Rightarrow {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right) = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)$
Thus substituting the values of ${n_{car}},{v_m},{v_s},{n_{siren}},v,$ we get
$\Rightarrow 176\left( {\dfrac{{v - {v_m}}}{{330 - 22}}} \right) = 165\left( {\dfrac{{v + {v_m}}}{{330}}} \right)$
$ \Rightarrow \left( {\dfrac{{v - {v_m}}}{{v + {v_m}}}} \right) = \dfrac{{165}}{{176}} \times \dfrac{{308}}{{330}} = \dfrac{7}{8}$
$ \Rightarrow 8v - 8{v_m} = 7v + 7{v_m}$
$ \Rightarrow 15{v_m} = v$
$ \Rightarrow {v_m} = \dfrac{v}{{15}} = \dfrac{{330}}{{15}} = 22m/s$
Thus the speed of the motorcyclist $ = 22m/s$
Hence the correct option is B.
Note: The sound source generates the sound waves and creates the vibrations in the surrounding medium. As this continues the vibrations propagate away at the speed of the sound.
Complete step by step solution:
Given data:
Speed of a police car, ${v_s} = 22m/s$
Frequency of the sound horn, ${n_{car}} = 176Hz$
Frequency of the siren, ${n_{siren}} = 165Hz$
Speed of the sound, v = 330 m/s
Speed of the motorcyclist, ${v_m}$ =?
It is given that in the first case the police car which is a source of sound is moving at a speed ${v_s}$and is approaching a motorcycle (observer) which in turn is moving away from the police car with a speed of ${v_m}$.
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n' = {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right)\_\_\_\_\_\_\_\left( 1 \right)$
Again in the second case the motorcyclist, an observer is approaching a stationary siren, source at a speed of ${v_m}$
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n'' = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)\_\_\_\_\_\_\_\left( 2 \right)$
It is given that the motorcyclist does not observe any beats and this is possible only when the difference in the frequencies heard by the motorcyclist is zero.
Thus $n' - n'' = 0$
$ \Rightarrow n' = n''$
Substituting the values of $n'$ and $n''$ from the equations 1 and 2, we get,
$\Rightarrow {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right) = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)$
Thus substituting the values of ${n_{car}},{v_m},{v_s},{n_{siren}},v,$ we get
$\Rightarrow 176\left( {\dfrac{{v - {v_m}}}{{330 - 22}}} \right) = 165\left( {\dfrac{{v + {v_m}}}{{330}}} \right)$
$ \Rightarrow \left( {\dfrac{{v - {v_m}}}{{v + {v_m}}}} \right) = \dfrac{{165}}{{176}} \times \dfrac{{308}}{{330}} = \dfrac{7}{8}$
$ \Rightarrow 8v - 8{v_m} = 7v + 7{v_m}$
$ \Rightarrow 15{v_m} = v$
$ \Rightarrow {v_m} = \dfrac{v}{{15}} = \dfrac{{330}}{{15}} = 22m/s$
Thus the speed of the motorcyclist $ = 22m/s$
Hence the correct option is B.
Note: The sound source generates the sound waves and creates the vibrations in the surrounding medium. As this continues the vibrations propagate away at the speed of the sound.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main