
A police car moving at 22 m/s, chases a motorcyclist. The policeman sounds his horn at 176 Hz, while both of them move towards a stationary siren of frequency 165 Hz as shown in the figure. If the motorcyclist does not observe any beats, his speed must be: (take the speed of sound = 330 m/s)
A) 33 m/s
B) 22 m/s
C) zero
D) 11 m/s
Answer
221.4k+ views
Hint: Frequency is defined as the number of waves that pass through a fixed point in the unit of time. It is also defined as the number of oscillations per unit of time. The unit of frequency is Hertz.
Complete step by step solution:
Given data:
Speed of a police car, ${v_s} = 22m/s$
Frequency of the sound horn, ${n_{car}} = 176Hz$
Frequency of the siren, ${n_{siren}} = 165Hz$
Speed of the sound, v = 330 m/s
Speed of the motorcyclist, ${v_m}$ =?
It is given that in the first case the police car which is a source of sound is moving at a speed ${v_s}$and is approaching a motorcycle (observer) which in turn is moving away from the police car with a speed of ${v_m}$.
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n' = {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right)\_\_\_\_\_\_\_\left( 1 \right)$
Again in the second case the motorcyclist, an observer is approaching a stationary siren, source at a speed of ${v_m}$
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n'' = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)\_\_\_\_\_\_\_\left( 2 \right)$
It is given that the motorcyclist does not observe any beats and this is possible only when the difference in the frequencies heard by the motorcyclist is zero.
Thus $n' - n'' = 0$
$ \Rightarrow n' = n''$
Substituting the values of $n'$ and $n''$ from the equations 1 and 2, we get,
$\Rightarrow {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right) = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)$
Thus substituting the values of ${n_{car}},{v_m},{v_s},{n_{siren}},v,$ we get
$\Rightarrow 176\left( {\dfrac{{v - {v_m}}}{{330 - 22}}} \right) = 165\left( {\dfrac{{v + {v_m}}}{{330}}} \right)$
$ \Rightarrow \left( {\dfrac{{v - {v_m}}}{{v + {v_m}}}} \right) = \dfrac{{165}}{{176}} \times \dfrac{{308}}{{330}} = \dfrac{7}{8}$
$ \Rightarrow 8v - 8{v_m} = 7v + 7{v_m}$
$ \Rightarrow 15{v_m} = v$
$ \Rightarrow {v_m} = \dfrac{v}{{15}} = \dfrac{{330}}{{15}} = 22m/s$
Thus the speed of the motorcyclist $ = 22m/s$
Hence the correct option is B.
Note: The sound source generates the sound waves and creates the vibrations in the surrounding medium. As this continues the vibrations propagate away at the speed of the sound.
Complete step by step solution:
Given data:
Speed of a police car, ${v_s} = 22m/s$
Frequency of the sound horn, ${n_{car}} = 176Hz$
Frequency of the siren, ${n_{siren}} = 165Hz$
Speed of the sound, v = 330 m/s
Speed of the motorcyclist, ${v_m}$ =?
It is given that in the first case the police car which is a source of sound is moving at a speed ${v_s}$and is approaching a motorcycle (observer) which in turn is moving away from the police car with a speed of ${v_m}$.
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n' = {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right)\_\_\_\_\_\_\_\left( 1 \right)$
Again in the second case the motorcyclist, an observer is approaching a stationary siren, source at a speed of ${v_m}$
Thus the apparent frequency of the sound heard by the motorcyclist is given by,
$\Rightarrow n'' = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)\_\_\_\_\_\_\_\left( 2 \right)$
It is given that the motorcyclist does not observe any beats and this is possible only when the difference in the frequencies heard by the motorcyclist is zero.
Thus $n' - n'' = 0$
$ \Rightarrow n' = n''$
Substituting the values of $n'$ and $n''$ from the equations 1 and 2, we get,
$\Rightarrow {n_{car}}\left( {\dfrac{{v - {v_m}}}{{v - {v_s}}}} \right) = {n_{siren}}\left( {\dfrac{{v + {v_m}}}{v}} \right)$
Thus substituting the values of ${n_{car}},{v_m},{v_s},{n_{siren}},v,$ we get
$\Rightarrow 176\left( {\dfrac{{v - {v_m}}}{{330 - 22}}} \right) = 165\left( {\dfrac{{v + {v_m}}}{{330}}} \right)$
$ \Rightarrow \left( {\dfrac{{v - {v_m}}}{{v + {v_m}}}} \right) = \dfrac{{165}}{{176}} \times \dfrac{{308}}{{330}} = \dfrac{7}{8}$
$ \Rightarrow 8v - 8{v_m} = 7v + 7{v_m}$
$ \Rightarrow 15{v_m} = v$
$ \Rightarrow {v_m} = \dfrac{v}{{15}} = \dfrac{{330}}{{15}} = 22m/s$
Thus the speed of the motorcyclist $ = 22m/s$
Hence the correct option is B.
Note: The sound source generates the sound waves and creates the vibrations in the surrounding medium. As this continues the vibrations propagate away at the speed of the sound.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

