A point object is located at a distance $15cm$ in front of a concave mirror of radius of curvature $20cm$. It has a velocity $2mm/s$ perpendicular to the principal axis. What will be the velocity of the image at that instant?
Answer
Verified
119.4k+ views
Hint: The velocity of the image is formed by a concave mirror. The radius of curvature is double the focal length $R = 2f$. The velocity of the image depends on the direction that the mirror is moving and the position of the object with respect to the mirror.
Formula Used:
We will be using the relation of the mirror formula $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
Complete step by step answer:
Given: The object is at the distance in front of the concave mirror $u = - 15cm$. Velocity perpendicular to the principal axis ${v_0} = 2mm/s$. The radius of curvature $R = 20cm$. To find the velocity of the image at that instant.
The focal length of a spherical mirror (both concave mirror and convex mirror) is half of its radius of curvature. The relationship is given by,
$R = 2f$
$f = R/2$
$f = 20/2 = 10cm$
$f = - 10cm$
${(v)_x} = - \dfrac{{{v^2}}}{{{u^2}}}{({v_0})_x}$;
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
The Mirror formula is defined by relating the object distance and image distance with the focal length. The distance between the object and the pole of the mirror is known as the object distance \[\left( u \right)\] . The distance between the image and the pole of the mirror is called image distance $(v)$. The distance between the principal focus and the pole of the mirror is called the focal length \[\left( f \right)\].
The mirror formula applies to the spherical mirror that is concave and convex mirror
Mirror formula is related by the image distance, object distance and focal length is given by:
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
$\dfrac{1}{v} + \dfrac{1}{{ - 15}} = \dfrac{1}{{10}}$
$\dfrac{1}{v} = \dfrac{{ - 1}}{{10}} + \dfrac{1}{{15}} = \dfrac{{ - 3 + 2}}{{30}}$
$v = - 30cm$
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
$ = - (\dfrac{{ - 30}}{{ - 15}})(2mm/s)$
${(v)_y} = - 2 \times 2 = 4mm/s$
The velocity of the image is $v = 4mm/s$.
Notes: German chemist Justus von Liebig in $1835$ gave the mirror formula. The focal length of the concave mirror is positive and the focal length of the convex mirror is negative. The radius of the curvature R is the reciprocal of the curvature.
Formula Used:
We will be using the relation of the mirror formula $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
Complete step by step answer:
Given: The object is at the distance in front of the concave mirror $u = - 15cm$. Velocity perpendicular to the principal axis ${v_0} = 2mm/s$. The radius of curvature $R = 20cm$. To find the velocity of the image at that instant.
The focal length of a spherical mirror (both concave mirror and convex mirror) is half of its radius of curvature. The relationship is given by,
$R = 2f$
$f = R/2$
$f = 20/2 = 10cm$
$f = - 10cm$
${(v)_x} = - \dfrac{{{v^2}}}{{{u^2}}}{({v_0})_x}$;
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
The Mirror formula is defined by relating the object distance and image distance with the focal length. The distance between the object and the pole of the mirror is known as the object distance \[\left( u \right)\] . The distance between the image and the pole of the mirror is called image distance $(v)$. The distance between the principal focus and the pole of the mirror is called the focal length \[\left( f \right)\].
The mirror formula applies to the spherical mirror that is concave and convex mirror
Mirror formula is related by the image distance, object distance and focal length is given by:
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
$\dfrac{1}{v} + \dfrac{1}{{ - 15}} = \dfrac{1}{{10}}$
$\dfrac{1}{v} = \dfrac{{ - 1}}{{10}} + \dfrac{1}{{15}} = \dfrac{{ - 3 + 2}}{{30}}$
$v = - 30cm$
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
$ = - (\dfrac{{ - 30}}{{ - 15}})(2mm/s)$
${(v)_y} = - 2 \times 2 = 4mm/s$
The velocity of the image is $v = 4mm/s$.
Notes: German chemist Justus von Liebig in $1835$ gave the mirror formula. The focal length of the concave mirror is positive and the focal length of the convex mirror is negative. The radius of the curvature R is the reciprocal of the curvature.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Symbol of switch is ON position is class 12 physics JEE_Main
JEE Main 2025 Helpline Numbers for Aspiring Candidates
Electromagnetic Waves Chapter - Physics JEE Main
A combination of five resistors is connected to a cell class 12 physics JEE_Main
Other Pages
JEE Advanced 2024 Syllabus Weightage
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
JEE Mains 2025: Exam Dates, Updates, Eligibility and More
Christmas Day 2024 - Origin, History, and Why Do We Celebrate It