
A point object is located at a distance $15cm$ in front of a concave mirror of radius of curvature $20cm$. It has a velocity $2mm/s$ perpendicular to the principal axis. What will be the velocity of the image at that instant?
Answer
232.8k+ views
Hint: The velocity of the image is formed by a concave mirror. The radius of curvature is double the focal length $R = 2f$. The velocity of the image depends on the direction that the mirror is moving and the position of the object with respect to the mirror.
Formula Used:
We will be using the relation of the mirror formula $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
Complete step by step answer:
Given: The object is at the distance in front of the concave mirror $u = - 15cm$. Velocity perpendicular to the principal axis ${v_0} = 2mm/s$. The radius of curvature $R = 20cm$. To find the velocity of the image at that instant.
The focal length of a spherical mirror (both concave mirror and convex mirror) is half of its radius of curvature. The relationship is given by,
$R = 2f$
$f = R/2$
$f = 20/2 = 10cm$
$f = - 10cm$
${(v)_x} = - \dfrac{{{v^2}}}{{{u^2}}}{({v_0})_x}$;
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
The Mirror formula is defined by relating the object distance and image distance with the focal length. The distance between the object and the pole of the mirror is known as the object distance \[\left( u \right)\] . The distance between the image and the pole of the mirror is called image distance $(v)$. The distance between the principal focus and the pole of the mirror is called the focal length \[\left( f \right)\].
The mirror formula applies to the spherical mirror that is concave and convex mirror
Mirror formula is related by the image distance, object distance and focal length is given by:
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
$\dfrac{1}{v} + \dfrac{1}{{ - 15}} = \dfrac{1}{{10}}$
$\dfrac{1}{v} = \dfrac{{ - 1}}{{10}} + \dfrac{1}{{15}} = \dfrac{{ - 3 + 2}}{{30}}$
$v = - 30cm$
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
$ = - (\dfrac{{ - 30}}{{ - 15}})(2mm/s)$
${(v)_y} = - 2 \times 2 = 4mm/s$
The velocity of the image is $v = 4mm/s$.
Notes: German chemist Justus von Liebig in $1835$ gave the mirror formula. The focal length of the concave mirror is positive and the focal length of the convex mirror is negative. The radius of the curvature R is the reciprocal of the curvature.
Formula Used:
We will be using the relation of the mirror formula $\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
Complete step by step answer:
Given: The object is at the distance in front of the concave mirror $u = - 15cm$. Velocity perpendicular to the principal axis ${v_0} = 2mm/s$. The radius of curvature $R = 20cm$. To find the velocity of the image at that instant.
The focal length of a spherical mirror (both concave mirror and convex mirror) is half of its radius of curvature. The relationship is given by,
$R = 2f$
$f = R/2$
$f = 20/2 = 10cm$
$f = - 10cm$
${(v)_x} = - \dfrac{{{v^2}}}{{{u^2}}}{({v_0})_x}$;
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
The Mirror formula is defined by relating the object distance and image distance with the focal length. The distance between the object and the pole of the mirror is known as the object distance \[\left( u \right)\] . The distance between the image and the pole of the mirror is called image distance $(v)$. The distance between the principal focus and the pole of the mirror is called the focal length \[\left( f \right)\].
The mirror formula applies to the spherical mirror that is concave and convex mirror
Mirror formula is related by the image distance, object distance and focal length is given by:
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}$.
$\dfrac{1}{v} + \dfrac{1}{{ - 15}} = \dfrac{1}{{10}}$
$\dfrac{1}{v} = \dfrac{{ - 1}}{{10}} + \dfrac{1}{{15}} = \dfrac{{ - 3 + 2}}{{30}}$
$v = - 30cm$
${(v)_y} = - \dfrac{v}{u}{({v_0})_y}$
$ = - (\dfrac{{ - 30}}{{ - 15}})(2mm/s)$
${(v)_y} = - 2 \times 2 = 4mm/s$
The velocity of the image is $v = 4mm/s$.
Notes: German chemist Justus von Liebig in $1835$ gave the mirror formula. The focal length of the concave mirror is positive and the focal length of the convex mirror is negative. The radius of the curvature R is the reciprocal of the curvature.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

