
A person travelled $25{\text{km}}$ by steamer, ${\text{40km}}$ by train, ${\text{30km}}$ by horse. It took $7{\text{ hours}}$. If the rate of the train is $4$ times that of the horse and $2$ times that of the steamer. Find the rate of horses.
A) $15{\text{km/h}}$
B) $7\dfrac{1}{2}{\text{km/h}}$
C) $30{\text{ km/h}}$
D) ${\text{16 km/h}}$
Answer
225k+ views
Hint: let the rate of train be $x{\text{ km/h}}$
Then the rate of horse will be $\dfrac{x}{4}{\text{ km/h}}$
Also the rate of steamer will be $\dfrac{x}{2}{\text{ km/h}}$
We know that the distance travelled by steamer, train and the horse. Hence we can time of each by the formula ${\text{distance}} = {\text{speed}} \times {\text{time}}$
Complete step by step solution:
In the question, we are given that a person travelled $25{\text{km}}$ by steamer, ${\text{40km}}$ by train, ${\text{30km}}$ by horse and the total time given is $7{\text{ hours}}$. We are also told that the rate of the train is $4$ times that of the horse and $2$ times that of the steamer.
So if we assume that the rate of train be $x{\text{ km/h}}$
Then the rate of horse will be $\dfrac{x}{4}{\text{ km/h}}$
Also the rate of steamer will be $\dfrac{x}{2}{\text{ km/h}}$
Now let ${t_1}$ be the time taken by travelling through a steamer, ${t_2}$ is the time through the train and ${t_3}$ be the time through horse. As we are given that the total time taken to travel is $7{\text{ hours}}$
So ${t_1} + {t_2} + {t_3} = 7 - - - - - - - (1)$
Now as we know that ${t_1}$ is the time taken to travel $25{\text{ km}}$ by the steamer. So as we know that
${\text{distance}} = {\text{speed}} \times {\text{time}}$
Speed is equivalent to rate. Rate we assumed was $\dfrac{x}{2}{\text{ km/h}}$
$25 = \dfrac{x}{2}({t_1})$
So we get ${t_1} = \dfrac{{50}}{x}{\text{ hour}} - - - - - (2)$
Now we also know that it takes ${t_2}$ time to travel ${\text{40 km}}$ by the train at the rate of \[x{\text{ km/h}}\]. So as we know that
${\text{distance}} = {\text{speed}} \times {\text{time}}$
$40 = x({t_2})$
${t_2} = \dfrac{{40}}{x}{\text{ hour}} - - - - - (3)$
We also know that it takes ${t_3}$ time to travel ${\text{30 km}}$ by the horse at the rate of \[\dfrac{x}{4}{\text{ km/h}}\]. So as we know that
${\text{distance}} = {\text{speed}} \times {\text{time}}$
$30 = \dfrac{x}{4}({t_3})$
${t_3} = \dfrac{{120}}{x}{\text{ hour}} - - - - - (4)$
Now putting the values of \[{t_1},{t_2},{t_3}\] in the equation (1)
${t_1} + {t_2} + {t_3} = 7$
$\dfrac{{50}}{x} + \dfrac{{40}}{x} + \dfrac{{120}}{x} = 7$
Taking the LCM, we get that
$\dfrac{{50 + 40 + 120}}{x} = 7$
$7x = 210$
$x = 30$
So $x$ is the rate of train which is $30{\text{ km/h}}$
Now we know that the rate of the horse is \[\dfrac{x}{4}{\text{ km/h}}\]
So the rate of horse$ = \dfrac{{30}}{4}{\text{ km/h}} = 7\dfrac{1}{2}{\text{ km/h}}$
Note: ${\text{(distance}} = {\text{speed}} \times {\text{time)}}$ this is valid only when people or particles are moving with the constant speed or with the zero acceleration. Acceleration is the rate of the change of velocity. So if the acceleration is non-zero then speed cannot be constant.
Then the rate of horse will be $\dfrac{x}{4}{\text{ km/h}}$
Also the rate of steamer will be $\dfrac{x}{2}{\text{ km/h}}$
We know that the distance travelled by steamer, train and the horse. Hence we can time of each by the formula ${\text{distance}} = {\text{speed}} \times {\text{time}}$
Complete step by step solution:
In the question, we are given that a person travelled $25{\text{km}}$ by steamer, ${\text{40km}}$ by train, ${\text{30km}}$ by horse and the total time given is $7{\text{ hours}}$. We are also told that the rate of the train is $4$ times that of the horse and $2$ times that of the steamer.
So if we assume that the rate of train be $x{\text{ km/h}}$
Then the rate of horse will be $\dfrac{x}{4}{\text{ km/h}}$
Also the rate of steamer will be $\dfrac{x}{2}{\text{ km/h}}$
Now let ${t_1}$ be the time taken by travelling through a steamer, ${t_2}$ is the time through the train and ${t_3}$ be the time through horse. As we are given that the total time taken to travel is $7{\text{ hours}}$
So ${t_1} + {t_2} + {t_3} = 7 - - - - - - - (1)$
Now as we know that ${t_1}$ is the time taken to travel $25{\text{ km}}$ by the steamer. So as we know that
${\text{distance}} = {\text{speed}} \times {\text{time}}$
Speed is equivalent to rate. Rate we assumed was $\dfrac{x}{2}{\text{ km/h}}$
$25 = \dfrac{x}{2}({t_1})$
So we get ${t_1} = \dfrac{{50}}{x}{\text{ hour}} - - - - - (2)$
Now we also know that it takes ${t_2}$ time to travel ${\text{40 km}}$ by the train at the rate of \[x{\text{ km/h}}\]. So as we know that
${\text{distance}} = {\text{speed}} \times {\text{time}}$
$40 = x({t_2})$
${t_2} = \dfrac{{40}}{x}{\text{ hour}} - - - - - (3)$
We also know that it takes ${t_3}$ time to travel ${\text{30 km}}$ by the horse at the rate of \[\dfrac{x}{4}{\text{ km/h}}\]. So as we know that
${\text{distance}} = {\text{speed}} \times {\text{time}}$
$30 = \dfrac{x}{4}({t_3})$
${t_3} = \dfrac{{120}}{x}{\text{ hour}} - - - - - (4)$
Now putting the values of \[{t_1},{t_2},{t_3}\] in the equation (1)
${t_1} + {t_2} + {t_3} = 7$
$\dfrac{{50}}{x} + \dfrac{{40}}{x} + \dfrac{{120}}{x} = 7$
Taking the LCM, we get that
$\dfrac{{50 + 40 + 120}}{x} = 7$
$7x = 210$
$x = 30$
So $x$ is the rate of train which is $30{\text{ km/h}}$
Now we know that the rate of the horse is \[\dfrac{x}{4}{\text{ km/h}}\]
So the rate of horse$ = \dfrac{{30}}{4}{\text{ km/h}} = 7\dfrac{1}{2}{\text{ km/h}}$
Note: ${\text{(distance}} = {\text{speed}} \times {\text{time)}}$ this is valid only when people or particles are moving with the constant speed or with the zero acceleration. Acceleration is the rate of the change of velocity. So if the acceleration is non-zero then speed cannot be constant.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

