
A particle of mass m and charge q enters a magnetic field B perpendicularly with a velocity v, The radius of the circular path described by it will be
A . ${\dfrac{Bq}{mv}}$
B . ${\dfrac{mq}{Bv}}$
C . ${\dfrac{mB}{qv}}$
D . ${\dfrac{mv}{Bq}}$
Answer
163.8k+ views
Hint:In this question we have to use the concept that when a charged particle moves in a magnetic field, a magnetic force operates on it and occasionally causes it to deflect. The strength of the magnetic force depends on the particle's charge, speed, and the strength of the magnetic field.
Formula used:
F=qvB; here, q denotes the charge, v the particle's speed, and B the magnetic field.
The centripetal force is given by,
${{F}_{c}}={\dfrac{m{{v}^{2}}}{r}}$
Here m is the mass of the particle, v is the velocity of the particle, and r is the radius.
Complete answer:
The magnetic force acting on a moving particle perpendicular to its motion is balanced by the centripetal force. The equilibrium formula can be expressed as,
$F={F_c}$ - (i)
In this case, Fc is the centripetal force acting on a charged particle. We are aware that the force, F, acting on a charged particle in a magnetic field is represented by,
F=qvB – (ii)
Here, q denotes the charge, v the particle's speed, and B the magnetic field.
The centripetal force is given by,
${{F}_{c}}={\dfrac{m{{v}^{2}}}{r}}$ - (iii)
Here m is the mass of the particle, v is the velocity of the particle, and r is the radius.
We will now substitute equation (iii) and (ii) in equation (i) to find the value of r.
$qvB={\dfrac{m{{v}^{2}}}{r}}$
$r={\dfrac{mv}{qB}}$
The correct answer is D.
Note:When a particle and magnetic field are moving relative to one another, a force is exerted on that particle. The force acting on the particle is 0 if the magnetic field and the particle are travelling parallel to each other.
Formula used:
F=qvB; here, q denotes the charge, v the particle's speed, and B the magnetic field.
The centripetal force is given by,
${{F}_{c}}={\dfrac{m{{v}^{2}}}{r}}$
Here m is the mass of the particle, v is the velocity of the particle, and r is the radius.
Complete answer:
The magnetic force acting on a moving particle perpendicular to its motion is balanced by the centripetal force. The equilibrium formula can be expressed as,
$F={F_c}$ - (i)
In this case, Fc is the centripetal force acting on a charged particle. We are aware that the force, F, acting on a charged particle in a magnetic field is represented by,
F=qvB – (ii)
Here, q denotes the charge, v the particle's speed, and B the magnetic field.
The centripetal force is given by,
${{F}_{c}}={\dfrac{m{{v}^{2}}}{r}}$ - (iii)
Here m is the mass of the particle, v is the velocity of the particle, and r is the radius.
We will now substitute equation (iii) and (ii) in equation (i) to find the value of r.
$qvB={\dfrac{m{{v}^{2}}}{r}}$
$r={\dfrac{mv}{qB}}$
The correct answer is D.
Note:When a particle and magnetic field are moving relative to one another, a force is exerted on that particle. The force acting on the particle is 0 if the magnetic field and the particle are travelling parallel to each other.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE
