
A magnet of magnetic moment \[M\] is situated with its axis along the direction of a magnetic field of strength\[B\]. The work done in rotating it by an angle of \[{180^0}\] will be:
A. \[ - MB\]
B. \[ + MB\]
C. \[ + 2MB\]
D. \[Zero\]
Answer
221.4k+ views
Hint:
To solve this question we have to use the basic formula of work done in moving a dipole in an external magnetic field. Use the given data and by putting it into the equation we can directly solve the question.
Formula used:
\[W = MB(1 - \cos \theta )\]
\[M\]- magnetic moment of the dipole
\[B\]- magnetic field strength
Complete step by step solution:
let us solve the given question by using the given data.
Given data: \[M\]- magnetic moment of the dipole.
\[B\]- magnetic field strength
\[\theta = {180^0}\]
Now, by using formula for work done in moving the dipole with magnetic moment in given magnetic field by the angle of \[{180^0}\] we have:
\[W = MB(1 - \cos \theta )\]
By using \[\theta = {180^0}\]in above equation we get
\[ \Rightarrow W = MB(1 - \cos {180^0})\]
\[ \Rightarrow W = MB(1 - ( - 1))\]
\[ \Rightarrow W = 2MB\]
Hence, the work done on the magnet to rotate it with the angle of \[{180^0}\]is \[2MB\].
Correct answer is option c.
Therefore, the correct option is C.
Note:
In this question, the dipole is along the magnetic field also called stable equilibrium position and rotating the magnet by \[{180^0}\] then it will be at unstable equilibrium position. A particle always tries to remain at a stable equilibrium position so whenever we move the dipole from its stable equilibrium position we have to do some extra work.
To solve this question we have to use the basic formula of work done in moving a dipole in an external magnetic field. Use the given data and by putting it into the equation we can directly solve the question.
Formula used:
\[W = MB(1 - \cos \theta )\]
\[M\]- magnetic moment of the dipole
\[B\]- magnetic field strength
Complete step by step solution:
let us solve the given question by using the given data.
Given data: \[M\]- magnetic moment of the dipole.
\[B\]- magnetic field strength
\[\theta = {180^0}\]
Now, by using formula for work done in moving the dipole with magnetic moment in given magnetic field by the angle of \[{180^0}\] we have:
\[W = MB(1 - \cos \theta )\]
By using \[\theta = {180^0}\]in above equation we get
\[ \Rightarrow W = MB(1 - \cos {180^0})\]
\[ \Rightarrow W = MB(1 - ( - 1))\]
\[ \Rightarrow W = 2MB\]
Hence, the work done on the magnet to rotate it with the angle of \[{180^0}\]is \[2MB\].
Correct answer is option c.
Therefore, the correct option is C.
Note:
In this question, the dipole is along the magnetic field also called stable equilibrium position and rotating the magnet by \[{180^0}\] then it will be at unstable equilibrium position. A particle always tries to remain at a stable equilibrium position so whenever we move the dipole from its stable equilibrium position we have to do some extra work.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

