
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. These oscillations of a particle are characterised by an invariant
A. Kinetic energy
B. Potential energy
C. Sum of kinetic energy and potential energy
D. Difference between the kinetic energy and potential energy.
Answer
154.5k+ views
Hint: The invariant physical quantities are the quantities which remain constant throughout the time interval of time. As the speed and displacement in the simple harmonic oscillation changes over the time, so kinetic energy and the potential energy changes.
Formula used:
where v is the speed of the particle at any displacement x from the mean position.
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and is the angular frequency of the simple harmonic oscillation.
The speed of the particle at any displacement x from the mean position is,
If the mass of the particle is m, then kinetic energy is,
The force constant of is K then
Then the potential energy is,
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Formula used:
where v is the speed of the particle at any displacement x from the mean position.
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and
The speed of the particle at any displacement x from the mean position is,
If the mass of the particle is m, then kinetic energy is,
The force constant of is K then
Then the potential energy is,
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
If the unit of power is 1Kilo Watt the length is 100m class 11 physics JEE_Main

Which of the following statements is correct if the class 11 physics JEE_Main

The quantity of heat required to heat one mole of a class 11 physics JEE_Main

IIIT JEE Main Cutoff 2024

Photoelectric Effect and Stopping Potential with Work Function and Derivation for JEE

Newton’s Laws of Motion: Three Laws of Motion Explanation with Examples

Other Pages
JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

List of Fastest Century In IPL - Cricket League and FAQs

NEET 2025: All Major Changes in Application Process, Pattern and More
