
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. These oscillations of a particle are characterised by an invariant
A. Kinetic energy
B. Potential energy
C. Sum of kinetic energy and potential energy
D. Difference between the kinetic energy and potential energy.
Answer
149.4k+ views
Hint: The invariant physical quantities are the quantities which remain constant throughout the time interval of time. As the speed and displacement in the simple harmonic oscillation changes over the time, so kinetic energy and the potential energy changes.
Formula used:
\[v = \omega \sqrt {{A^2} - {x^2}} \]
where v is the speed of the particle at any displacement x from the mean position.
\[KE = \dfrac{1}{2}m{v^2}\]
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
\[x = A\sin \left( {\omega t} \right)\]
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and \[\omega \] is the angular frequency of the simple harmonic oscillation.
The speed of the particle at any displacement x from the mean position is,
\[v = \omega \sqrt {{A^2} - {x^2}} \]
If the mass of the particle is m, then kinetic energy is,
\[KE = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow KE = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) \\ \]
The force constant of is K then \[K = m{\omega ^2}\]
Then the potential energy is,
\[PE = \dfrac{{K{x^2}}}{2} \\ \]
\[\Rightarrow PE = \dfrac{{m{\omega ^2}{x^2}}}{2}\]
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
\[T = KE + PE\]
\[\Rightarrow T = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) + \dfrac{1}{2}m{\omega ^2}{x^2} \\ \]
\[\therefore T = \dfrac{1}{2}m{\omega ^2}{A^2}\]
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Formula used:
\[v = \omega \sqrt {{A^2} - {x^2}} \]
where v is the speed of the particle at any displacement x from the mean position.
\[KE = \dfrac{1}{2}m{v^2}\]
where KE is the kinetic energy of the particle of mass m and speed v.
Complete step by step solution:
When a longitudinal wave propagates through a medium, the particles of the medium execute simple harmonic oscillations about their mean positions. The equation of the displacement is given as,
\[x = A\sin \left( {\omega t} \right)\]
Here x is the displacement of the particle at any time t. A is the maximum displacement of the particle from the mean position and \[\omega \] is the angular frequency of the simple harmonic oscillation.
The speed of the particle at any displacement x from the mean position is,
\[v = \omega \sqrt {{A^2} - {x^2}} \]
If the mass of the particle is m, then kinetic energy is,
\[KE = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow KE = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) \\ \]
The force constant of is K then \[K = m{\omega ^2}\]
Then the potential energy is,
\[PE = \dfrac{{K{x^2}}}{2} \\ \]
\[\Rightarrow PE = \dfrac{{m{\omega ^2}{x^2}}}{2}\]
The sum of the kinetic energy and potential energy of the particle is the total mechanical energy,
\[T = KE + PE\]
\[\Rightarrow T = \dfrac{1}{2}m{\omega ^2}\left( {{A^2} - {x^2}} \right) + \dfrac{1}{2}m{\omega ^2}{x^2} \\ \]
\[\therefore T = \dfrac{1}{2}m{\omega ^2}{A^2}\]
So, the sum of the kinetic energy and the potential energy of the particle in simple harmonic motion is constant, i.e. invariant. Hence, these oscillations of a particle are characterised by an invariant which is the sum of the kinetic energy and the potential energy.
Therefore, the correct option is C.
Note: As the particle moves away from the mean position the speed decreases and displacement increases. So, the kinetic energy decreases and potential energy increases. But at any displacement the sum of the kinetic energy and the potential energy is constant.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Charging and Discharging of Capacitor

Ideal and Non-Ideal Solutions Raoult's Law - JEE

The time period of an artificial satellite in a circular class 11 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

A pressure of 100 kPa causes a decrease in volume of class 11 physics JEE_Main

Other Pages
List of Fastest Century In IPL - Cricket League and FAQs

JEE Main Response Sheet 2025 Released – Download Links, and Check Latest Updates

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

NEET Physics Syllabus 2025 FREE PDF: Important Topics and Weightage

List of 10 Fastest Centuries in ODIs - Players and Countries

NCERT Solutions for Class 9 Maths Updated for 2024-25 Exam | Free PDF
