
A line \[4x + y = 1\] passes through the point \[A\left( {2, - 7} \right)\] meets the lines \[BC\] whose equation is \[3x - 4y + 1 = 0\] at the point \[B\]. The equation of the line \[AC\] so that \[AB = AC\], is
A. \[52x + 89y + 519 = 0\]
B. \[52x + 89y - 519 = 0\]
C. \[89x + 52y + 519 = 0\]
D. \[89x + 52y - 519 = 0\]
Answer
218.7k+ views
Hint: In this question, we first find the slope of the line \[4x + y = 1\] and the second line \[3x - 4y + 1 = 0\] , and then we find the angle between these two lines by the formula \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\] and finally substitute the given points in it to get the desired result
Formula Used:
1. \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
Where \[m\] is the slope of the line
2. \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Complete step-by-step solution:
Given that
\[
4x + y = 1...\left( 1 \right) \\
3x - 4y + 1 = 0...\left( 2 \right)
\]
Rewrite equation \[\left( 1 \right)\] as:
\[
y = 1 - 4x \\
y = - 4x + 1 \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = - 4\]
Rewrite equation \[\left( 2 \right)\] as:
\[
- 4y = - 3x - 1 \\
- 4y = - \left( {3x + 1} \right) \\
4y = 3x + 1 \\
y = \dfrac{3}{4}x + \dfrac{1}{4} \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = \dfrac{3}{4}\]

Image: Triangle ABC with A vertex (2,-7)
Now we have two slopes which is \[m = \dfrac{3}{4}\] and \[m = - 4\] of \[BC\] and \[AB\]
We know the formula \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
For line \[AB\] and \[BC\]:
\[\alpha = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\alpha = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|} \right) \\
\tan \,\alpha = \left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|...\left( 3 \right)
\]
Let us assume that \[{m_1} = \dfrac{3}{4}\]be the slope of \[BC\] and \[m\] be the slope of \[AC\]
\[
\theta = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4} \times m} \right)}}} \right| \\
= {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|
\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\theta = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4}m} \right)}}} \right|} \right) \\
\tan \,\theta = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|...\left( 4 \right)
\]
Now we are given that \[AB = AC\]
So, \[\tan \,\alpha = \tan \,\theta \]
Substitute the value from equation \[\left( 3 \right)\] and \[\left( 4 \right)\]:
\[
\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \dfrac{3}{4} \times \left( { - 4} \right)}}} \right| = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right| \\
\left| {\dfrac{{\dfrac{3}{4} + 4}}{{1 + 3\left( { - 1} \right)}}} \right| = \left| {\dfrac{{\dfrac{{3 - 4m}}{4}}}{{\dfrac{{4 + 3m}}{4}}}} \right| \\
\left| {\dfrac{{\dfrac{{3 + 16}}{4}}}{{1 - 3}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\left| {\dfrac{{19}}{{4 \times \left( { - 2} \right)}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right|
\]
Further solving,
\[
\left| {\dfrac{{19}}{{ - 8}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\dfrac{{19}}{8} = \dfrac{{3 - 4m}}{{4 + 3m}} \\
19\left( {4 + 3m} \right) = 8\left( {3 - 4m} \right) \\
76 + 57m = 24 - 32m
\]
Furthermore,
\[
57m + 32m = 24 - 76 \\
89m = - 52 \\
m = \dfrac{{ - 52}}{{89}}
\]
Also given that the line passes through the point \[A\left( {2, - 7} \right)\]
We know the formula of equation of line is \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Substituting all the values in above formula:
\[y + 7 = \dfrac{{ - 52}}{{89}}\left( {x - 2} \right)\]
Multiply 89 on both sides:
\[
89\left( {y + 7} \right) = - 52\left( {x - 2} \right) \\
89y + 623 = - 52x + 104 \\
89y + 52x + 623 - 104 = 0 \\
89y + 52x + 519 = 0
\]
Hence, option (A) is correct
Note: Students must be careful while finding the slope of the given line. Also, students must be careful while finding the angle between these two lines and also substitute the values of slope in the formula correctly to get the desired result.
Formula Used:
1. \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
Where \[m\] is the slope of the line
2. \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Complete step-by-step solution:
Given that
\[
4x + y = 1...\left( 1 \right) \\
3x - 4y + 1 = 0...\left( 2 \right)
\]
Rewrite equation \[\left( 1 \right)\] as:
\[
y = 1 - 4x \\
y = - 4x + 1 \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = - 4\]
Rewrite equation \[\left( 2 \right)\] as:
\[
- 4y = - 3x - 1 \\
- 4y = - \left( {3x + 1} \right) \\
4y = 3x + 1 \\
y = \dfrac{3}{4}x + \dfrac{1}{4} \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = \dfrac{3}{4}\]

Image: Triangle ABC with A vertex (2,-7)
Now we have two slopes which is \[m = \dfrac{3}{4}\] and \[m = - 4\] of \[BC\] and \[AB\]
We know the formula \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
For line \[AB\] and \[BC\]:
\[\alpha = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\alpha = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|} \right) \\
\tan \,\alpha = \left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|...\left( 3 \right)
\]
Let us assume that \[{m_1} = \dfrac{3}{4}\]be the slope of \[BC\] and \[m\] be the slope of \[AC\]
\[
\theta = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4} \times m} \right)}}} \right| \\
= {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|
\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\theta = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4}m} \right)}}} \right|} \right) \\
\tan \,\theta = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|...\left( 4 \right)
\]
Now we are given that \[AB = AC\]
So, \[\tan \,\alpha = \tan \,\theta \]
Substitute the value from equation \[\left( 3 \right)\] and \[\left( 4 \right)\]:
\[
\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \dfrac{3}{4} \times \left( { - 4} \right)}}} \right| = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right| \\
\left| {\dfrac{{\dfrac{3}{4} + 4}}{{1 + 3\left( { - 1} \right)}}} \right| = \left| {\dfrac{{\dfrac{{3 - 4m}}{4}}}{{\dfrac{{4 + 3m}}{4}}}} \right| \\
\left| {\dfrac{{\dfrac{{3 + 16}}{4}}}{{1 - 3}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\left| {\dfrac{{19}}{{4 \times \left( { - 2} \right)}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right|
\]
Further solving,
\[
\left| {\dfrac{{19}}{{ - 8}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\dfrac{{19}}{8} = \dfrac{{3 - 4m}}{{4 + 3m}} \\
19\left( {4 + 3m} \right) = 8\left( {3 - 4m} \right) \\
76 + 57m = 24 - 32m
\]
Furthermore,
\[
57m + 32m = 24 - 76 \\
89m = - 52 \\
m = \dfrac{{ - 52}}{{89}}
\]
Also given that the line passes through the point \[A\left( {2, - 7} \right)\]
We know the formula of equation of line is \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Substituting all the values in above formula:
\[y + 7 = \dfrac{{ - 52}}{{89}}\left( {x - 2} \right)\]
Multiply 89 on both sides:
\[
89\left( {y + 7} \right) = - 52\left( {x - 2} \right) \\
89y + 623 = - 52x + 104 \\
89y + 52x + 623 - 104 = 0 \\
89y + 52x + 519 = 0
\]
Hence, option (A) is correct
Note: Students must be careful while finding the slope of the given line. Also, students must be careful while finding the angle between these two lines and also substitute the values of slope in the formula correctly to get the desired result.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

