
When a light ray enters in a glass slab from air then:
A) Its wavelength increases.
B) Its wavelength decreases.
C) Its frequency increases.
D) Neither wavelength or frequency changes.
Answer
207.3k+ views
Hint: As we know, when a light enters into a glass slab it bends towards the normal this phenomena is commonly called refraction. We know that refraction is due to the change in wavelength due to change in speed of light in other medium while frequency is inherent property of a light ray.
Complete step by step solution:We know that glass is denser medium than air. Glass has a higher refractive index than air. So the speed of light in air is greater than the speed of light in glass. Because the relation between refractive index of glass and speed of light is
$v=\dfrac{c}{\mu }$, Where, $v$ is the speed of light at any medium, $\mu $ is the refractive index of that medium, and $c$ is the speed of light in vacuum. So, due to the higher refractive index of glass the speed of light in glass is slow.
And there is also a relation between speed of light in that medium, wavelength and frequency.
i.e. $v=f\lambda $
Where, $f$ is the frequency of light ray it is inherent property and this doesn’t change with change with medium, and $\lambda $ is wavelength of light in that medium.
So, if the speed of light decreases with change in medium then wavelength of light decreases because the frequency of light is constant.
Hence, option(B) is correct.
Additional Information:
Light is refracted when it crosses the interface from air into glass in which it moves more slowly. Since the light speed changes at the interface, the wavelength of the light must change, too. The wavelength decreases as the light enters the medium and the light wave changes direction. The refractive index can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values.
Note: We have to remember that refractive index of rarer is always less than refractive index of denser object. The phenomena of refraction is discovered with the particle theory of light but after it is also explained by wave theory of light. So, the terms wavelength and frequency terms are involved in refraction phenomena.
Complete step by step solution:We know that glass is denser medium than air. Glass has a higher refractive index than air. So the speed of light in air is greater than the speed of light in glass. Because the relation between refractive index of glass and speed of light is
$v=\dfrac{c}{\mu }$, Where, $v$ is the speed of light at any medium, $\mu $ is the refractive index of that medium, and $c$ is the speed of light in vacuum. So, due to the higher refractive index of glass the speed of light in glass is slow.
And there is also a relation between speed of light in that medium, wavelength and frequency.
i.e. $v=f\lambda $
Where, $f$ is the frequency of light ray it is inherent property and this doesn’t change with change with medium, and $\lambda $ is wavelength of light in that medium.
So, if the speed of light decreases with change in medium then wavelength of light decreases because the frequency of light is constant.
Hence, option(B) is correct.
Additional Information:
Light is refracted when it crosses the interface from air into glass in which it moves more slowly. Since the light speed changes at the interface, the wavelength of the light must change, too. The wavelength decreases as the light enters the medium and the light wave changes direction. The refractive index can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values.
Note: We have to remember that refractive index of rarer is always less than refractive index of denser object. The phenomena of refraction is discovered with the particle theory of light but after it is also explained by wave theory of light. So, the terms wavelength and frequency terms are involved in refraction phenomena.
Recently Updated Pages
JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

JEE Main 2026 Eligibility Criteria – Age Limit, Marks, Attempts, and More

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Average and RMS Value in Physics: Formula, Comparison & Application

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

