
A gamma-ray photon creates an electron-positron pair. If the total kinetic energy of the electron-positron pair is 0.78 MeV and the rest mass energy of the electron is 0.5 MeV, find the energy of the gamma-ray photon.
A) 0.78 MeV
B) 1.78 MeV
C) 1.28 MeV
D) 0.28 MeV
Answer
232.8k+ views
Hint: The gamma-ray photon converts into an electron-positron pair moving with a total kinetic energy of 0.78 MeV. The energy of this reaction is conserved. Also, the rest mass energy of the electron is equal to the rest mass energy of the positron.
Complete step by step answer:
Step 1: List the parameters known from the question.
The creation of the electron-positron pair can be expressed as a reaction equation.
${\text{gamma - ray photon}} \to e + {e^ + } + K.E$
The rest mass energy of the electron is ${E_{e0}} = 0.5{\text{MeV}}$.
The total kinetic energy of the electron-positron pair is $K.E = 0.78{\text{MeV}}$.
Step 2: Find the energy of the gamma-ray photon using the energy conservation theorem.
According to the energy conservation theorem, the energy before creation must be equal to the energy after creation.
i.e., ${E_b} = {E_a}$
The energy before creation is the energy of the gamma-ray photon.
i.e., ${E_b} = {E_\gamma }$
The energy after creation is the sum of the rest mass energy of the electron ${E_{e0}}$, the rest mass energy of the positron ${E_{p0}}$ and the total kinetic energy of the electron-positron pair $K.E$.
i.e., ${E_a} = {E_{e0}} + {E_{p0}} + K.E$
Hence, the energy of the gamma-ray photon is given by, ${E_\gamma } = {E_{e0}} + {E_{p0}} + K.E$ ------- (1)
Substituting values for ${E_{e0}} = {E_{p0}} = 0.5{\text{MeV}}$ and $K.E = 0.78{\text{MeV}}$ in equation (1) we get, ${E_\gamma } = 0.5 + 0.5 + 0.78 = 1.78{\text{MeV}}$
Thus the energy of the gamma-ray photon is ${E_\gamma } = 1.78{\text{MeV}}$
So, the correct option is B.
Note: Positron is the antiparticle of the electron and is also known as antielectron. It has the same spin and same mass as that of the electron but with a charge $ + 1e$. So, it will have the same rest mass energy as that of the electron. The energy of the gamma-ray photon is used to create the electron-positron pair and to provide them with kinetic energy.
Complete step by step answer:
Step 1: List the parameters known from the question.
The creation of the electron-positron pair can be expressed as a reaction equation.
${\text{gamma - ray photon}} \to e + {e^ + } + K.E$
The rest mass energy of the electron is ${E_{e0}} = 0.5{\text{MeV}}$.
The total kinetic energy of the electron-positron pair is $K.E = 0.78{\text{MeV}}$.
Step 2: Find the energy of the gamma-ray photon using the energy conservation theorem.
According to the energy conservation theorem, the energy before creation must be equal to the energy after creation.
i.e., ${E_b} = {E_a}$
The energy before creation is the energy of the gamma-ray photon.
i.e., ${E_b} = {E_\gamma }$
The energy after creation is the sum of the rest mass energy of the electron ${E_{e0}}$, the rest mass energy of the positron ${E_{p0}}$ and the total kinetic energy of the electron-positron pair $K.E$.
i.e., ${E_a} = {E_{e0}} + {E_{p0}} + K.E$
Hence, the energy of the gamma-ray photon is given by, ${E_\gamma } = {E_{e0}} + {E_{p0}} + K.E$ ------- (1)
Substituting values for ${E_{e0}} = {E_{p0}} = 0.5{\text{MeV}}$ and $K.E = 0.78{\text{MeV}}$ in equation (1) we get, ${E_\gamma } = 0.5 + 0.5 + 0.78 = 1.78{\text{MeV}}$
Thus the energy of the gamma-ray photon is ${E_\gamma } = 1.78{\text{MeV}}$
So, the correct option is B.
Note: Positron is the antiparticle of the electron and is also known as antielectron. It has the same spin and same mass as that of the electron but with a charge $ + 1e$. So, it will have the same rest mass energy as that of the electron. The energy of the gamma-ray photon is used to create the electron-positron pair and to provide them with kinetic energy.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

