A flip coil consists of N turns of circular coils which lie in a uniform magnetic field. Plane of the coils is perpendicular to the magnetic field as shown in the figure. The coil is connected to a current integrator which measures the total charge passing through it. The coil is turned through $180^\circ $ about the diameter. The charge passing through the coil is:
A) $\dfrac{{NBA}}{R}$ ;
B) $\dfrac{{\sqrt 3 NBA}}{{2R}}$;
C) $\dfrac{{NBA}}{{\sqrt 2 R}}$;
D) $\dfrac{{2NBA}}{R}$;
Answer
Verified
118.8k+ views
Hint: A flip coil is a device which is used for determining the magnetic field intensity. It is made up of a small coir wire which is then suddenly rotated through $180^\circ $ and a galvanometer is used to measure the net current.
Formula Used:
$N{\phi _B} = NBA\cos \theta $;
Where:
N = Number of turns;
${\phi _B}$= Magnetic Flux Density;
B = Magnetic field;
A = Area;
Complete step by step answer:
Step 1: Find the change in the magnetic flux:
The formula for magnetic flux is given as:
$N{\phi _B} = NBA\cos \theta $ ;
Here there would be two fluxes: one would be the initial flux ${\phi _i}$which would be at $\sin 90^\circ $and the final flux would be at$\cos 180^\circ $. This is so because the coil has taken a $180^\circ $turn. The magnetic flux would be:
$N{\phi _B} = N\left( {BA\sin 90^\circ - BA\cos 180^\circ } \right)$;
$ \Rightarrow N{\phi _B} = N\left( {BA - \left( { - BA} \right)} \right)$;
Simplify the above equation:
$ \Rightarrow N{\phi _B} = 2NBA$;
Put the area of the circle in the above equation:
$N{\phi _B} = 2NB\left( {\pi {r^2}} \right)$;
$ \Rightarrow N{\phi _B} = 2\pi {r^2}NB$;
Step 2: Find out the average induced EMF is:
\[\left| {{\varepsilon _{avg}}} \right| = \left| {N\dfrac{{\Delta {\phi _B}}}{{\Delta t}}} \right|\] ; …(\[\left| {{\varepsilon _{avg}}} \right|\] = Magnitude of EMF )
Put the value of $N{\phi _B} = 2\pi {r^2}NB$in the above equation:
\[ \Rightarrow \left| {{\varepsilon _{avg}}} \right| = \left| {\dfrac{{2\pi {r^2}NB}}{{\Delta t}}} \right|\]; …..(Average EMF)
Step 3: Find out the average induced current.
$\Rightarrow$ ${I_{avg}} = \dfrac{{\left| {{\varepsilon _{avg}}} \right|}}{R}$ ; …(Here ${I_{avg}}$= Induced current; $R$= Resistance )
Enter the value of average induced EMF\[\left| {{\varepsilon _{avg}}} \right| = \left| {\dfrac{{2\pi {r^2}NB}}{{\Delta t}}} \right|\] in the above equation:
$\Rightarrow$ ${I_{avg}} = \dfrac{{2\pi {r^2}NB}}{{R\Delta t}}$;
Step 4: Find out the total charge due to induction:
${Q_{net}} = {I_{avg}}\Delta t$; …(Here${Q_{net}}$= Net charge )
Put the value of average current induced ${I_{avg}} = \dfrac{{2\pi {r^2}NB}}{{R\Delta t}}$in the above equation.
$\Rightarrow$ ${Q_{net}} = \dfrac{{2\pi {r^2}NB}}{R}{\text{ or }}\dfrac{{2NBA}}{R}$;
Option D is correct. The charge passing through the coil is ${Q_{net}} = \dfrac{{2NBA}}{R}$.
Note: The process is lengthy and many parameters seem to be missing like time,etc so go step by step. First find out the change in the magnetic flux then put the value of the change in magnetic flux in the average induced EMF, after that find out the value of induced current by placing the value of induced Emf in the induced current equation. The net finds out the total net charge by the formula ${Q_{net}} = {I_{avg}}\Delta t$.
Formula Used:
$N{\phi _B} = NBA\cos \theta $;
Where:
N = Number of turns;
${\phi _B}$= Magnetic Flux Density;
B = Magnetic field;
A = Area;
Complete step by step answer:
Step 1: Find the change in the magnetic flux:
The formula for magnetic flux is given as:
$N{\phi _B} = NBA\cos \theta $ ;
Here there would be two fluxes: one would be the initial flux ${\phi _i}$which would be at $\sin 90^\circ $and the final flux would be at$\cos 180^\circ $. This is so because the coil has taken a $180^\circ $turn. The magnetic flux would be:
$N{\phi _B} = N\left( {BA\sin 90^\circ - BA\cos 180^\circ } \right)$;
$ \Rightarrow N{\phi _B} = N\left( {BA - \left( { - BA} \right)} \right)$;
Simplify the above equation:
$ \Rightarrow N{\phi _B} = 2NBA$;
Put the area of the circle in the above equation:
$N{\phi _B} = 2NB\left( {\pi {r^2}} \right)$;
$ \Rightarrow N{\phi _B} = 2\pi {r^2}NB$;
Step 2: Find out the average induced EMF is:
\[\left| {{\varepsilon _{avg}}} \right| = \left| {N\dfrac{{\Delta {\phi _B}}}{{\Delta t}}} \right|\] ; …(\[\left| {{\varepsilon _{avg}}} \right|\] = Magnitude of EMF )
Put the value of $N{\phi _B} = 2\pi {r^2}NB$in the above equation:
\[ \Rightarrow \left| {{\varepsilon _{avg}}} \right| = \left| {\dfrac{{2\pi {r^2}NB}}{{\Delta t}}} \right|\]; …..(Average EMF)
Step 3: Find out the average induced current.
$\Rightarrow$ ${I_{avg}} = \dfrac{{\left| {{\varepsilon _{avg}}} \right|}}{R}$ ; …(Here ${I_{avg}}$= Induced current; $R$= Resistance )
Enter the value of average induced EMF\[\left| {{\varepsilon _{avg}}} \right| = \left| {\dfrac{{2\pi {r^2}NB}}{{\Delta t}}} \right|\] in the above equation:
$\Rightarrow$ ${I_{avg}} = \dfrac{{2\pi {r^2}NB}}{{R\Delta t}}$;
Step 4: Find out the total charge due to induction:
${Q_{net}} = {I_{avg}}\Delta t$; …(Here${Q_{net}}$= Net charge )
Put the value of average current induced ${I_{avg}} = \dfrac{{2\pi {r^2}NB}}{{R\Delta t}}$in the above equation.
$\Rightarrow$ ${Q_{net}} = \dfrac{{2\pi {r^2}NB}}{R}{\text{ or }}\dfrac{{2NBA}}{R}$;
Option D is correct. The charge passing through the coil is ${Q_{net}} = \dfrac{{2NBA}}{R}$.
Note: The process is lengthy and many parameters seem to be missing like time,etc so go step by step. First find out the change in the magnetic flux then put the value of the change in magnetic flux in the average induced EMF, after that find out the value of induced current by placing the value of induced Emf in the induced current equation. The net finds out the total net charge by the formula ${Q_{net}} = {I_{avg}}\Delta t$.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics