
A coil of self-inductance 2H carries a 2A current. If the direction of current is reversed in 1 second, then find the induced emf.
A. -8V
B. 8V
C. -4V
D. Zero
Answer
221.1k+ views
Hint: In order to solve this question we need to know about the induced emf and the self-inductance of a coil. An emf is said to be induced when a magnet is pushed in and out of the coil. EMFs are of opposite signs that are produced by motion in opposite directions, and by reversing poles EMFs can also be reversed. Self-inductance of a coil is the phenomenon due to which an emf is induced in a coil when the magnetic flux of the coil, linked with the coil changes or current in the coil changes. Now we are able to solve the problem step by step as follows.
Formula Used:
The formula to find the induced emf in a self-inductance coil is given by,
\[E = - L\dfrac{{di}}{{dt}}\]…….. (1)
Where, \[L\] is the self-inductance of the coil and \[\dfrac{{di}}{{dt}}\] is change in current with respect to time.
Complete step by step solution:
To find the induced emf we have from the equation (1)
\[E = - L\dfrac{{di}}{{dt}}\]
\[\Rightarrow \left| E \right| = L\dfrac{{di}}{{dt}}\]
By data, at the beginning the value of current was +2A and after 1sec the direction of the current is reversed, then the current becomes -2A. therefore \[di\]is the change in current can be written as,
\[di = 2 - \left( { - 2} \right)\]
By data, \[L = 2H\], \[i = 2A\] and \[t = 1s\]
\[ \Rightarrow E = 2\left( {\dfrac{{2 - \left( { - 2} \right)}}{1}} \right)\]
\[E = 8V\]
Therefore, the value of induced emf is 8V.
Hence, Option B is the correct answer.
Note:The Self-inductance of a coil depends on the cross-sectional area of the coil, number of turns per unit length in the coil, the length of the solenoid and the permeability of the core material.
Formula Used:
The formula to find the induced emf in a self-inductance coil is given by,
\[E = - L\dfrac{{di}}{{dt}}\]…….. (1)
Where, \[L\] is the self-inductance of the coil and \[\dfrac{{di}}{{dt}}\] is change in current with respect to time.
Complete step by step solution:
To find the induced emf we have from the equation (1)
\[E = - L\dfrac{{di}}{{dt}}\]
\[\Rightarrow \left| E \right| = L\dfrac{{di}}{{dt}}\]
By data, at the beginning the value of current was +2A and after 1sec the direction of the current is reversed, then the current becomes -2A. therefore \[di\]is the change in current can be written as,
\[di = 2 - \left( { - 2} \right)\]
By data, \[L = 2H\], \[i = 2A\] and \[t = 1s\]
\[ \Rightarrow E = 2\left( {\dfrac{{2 - \left( { - 2} \right)}}{1}} \right)\]
\[E = 8V\]
Therefore, the value of induced emf is 8V.
Hence, Option B is the correct answer.
Note:The Self-inductance of a coil depends on the cross-sectional area of the coil, number of turns per unit length in the coil, the length of the solenoid and the permeability of the core material.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

