
A beam of ultraviolet light of all wavelengths passes through hydrogen gas at room temperature, in the x- direction. Assume that all photons emitted due to electron transitions inside the gas emerge in the y- direction. If A and B are the lights emerging from the gas in x and y directions respectively then:
THIS QUESTION HAS MULTIPLE CORRECT OPTIONS
(A) Some of the incident wavelengths will be absent in A.
(B) Only those wavelengths will be present in B which are absent in A.
(C) B will contain some visible light
(D) B will come some infrared light
Answer
134.4k+ views
Hint We should know that monochromatic light is light or optical radiation where the optical spectrum contains only a single optical frequency. The associated electric field strength at a certain point in space, for example, exhibits a purely sinusoidal oscillation, having a constant instantaneous frequency and a zero bandwidth. Monochromatic light is light of a single wavelength, or at least very narrow bandwidth. This makes for very sharply defined interference bands. This is pretty much essential for a good two slit result. As it is usual to use lasers for such experiments, the light will also be coherent. Normally, a laser is considered to be the best monochromatic light source. However, lasers are rather expensive and provide only single wavelengths or very small bands. An economic, broadband alternative is the combination of light source and monochromator. Based on this concept we have to solve this question.
Complete step by step answer
Let us first define refractive index as the measure of the bending of a ray of light when passing from one medium into another. When light enters a material with higher refractive index, the angle of refraction will be smaller than the angle of incidence and the light will be refracted towards the normal of the surface. The higher the refractive index, the closer to the normal direction the light will travel.
It should be known to us that refractive index values are usually determined at standard temperature. A higher temperature means the liquid becomes less dense and less viscous, causing light to travel faster in the medium. This results in a larger value for the refractive index due to a larger ratio.
Given, incident wavelengths travel in x-direction which are in the U.V region, which means they can excite an electron from $\mathrm{n}=1$ to higher levels. Hence, some of the incident wavelengths will be absent in A.
Photons emerging due to transitions of electrons to their ground
state contains visible region wavelengths if transition is done into n=2. If transition is done into $\mathrm{n}>2$, photons contain I.R wavelengths.
Therefore, A, C, D are the correct choices.
Note: We should know that the wavelength is the distance between two wave crests, which is the same as the distance between two troughs. The number of waves that pass-through a given point in one second is called the frequency, measured in units of cycles per second called Hertz. As the full spectrum of visible light travels through a prism, the wavelengths separate into the colours of the rainbow because each colour is a different wavelength. Violet has the shortest wavelength, at around 380 nanometres, and red has the longest wavelength, at around 700 nanometres. Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Complete step by step answer
Let us first define refractive index as the measure of the bending of a ray of light when passing from one medium into another. When light enters a material with higher refractive index, the angle of refraction will be smaller than the angle of incidence and the light will be refracted towards the normal of the surface. The higher the refractive index, the closer to the normal direction the light will travel.
It should be known to us that refractive index values are usually determined at standard temperature. A higher temperature means the liquid becomes less dense and less viscous, causing light to travel faster in the medium. This results in a larger value for the refractive index due to a larger ratio.
Given, incident wavelengths travel in x-direction which are in the U.V region, which means they can excite an electron from $\mathrm{n}=1$ to higher levels. Hence, some of the incident wavelengths will be absent in A.
Photons emerging due to transitions of electrons to their ground
state contains visible region wavelengths if transition is done into n=2. If transition is done into $\mathrm{n}>2$, photons contain I.R wavelengths.
Therefore, A, C, D are the correct choices.
Note: We should know that the wavelength is the distance between two wave crests, which is the same as the distance between two troughs. The number of waves that pass-through a given point in one second is called the frequency, measured in units of cycles per second called Hertz. As the full spectrum of visible light travels through a prism, the wavelengths separate into the colours of the rainbow because each colour is a different wavelength. Violet has the shortest wavelength, at around 380 nanometres, and red has the longest wavelength, at around 700 nanometres. Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
