
A $2cm$ tall object is placed perpendicular to the principal axis of a convex lens of focal length $10cm$. The distance of the object from the lens is $15cm$ find the nature, position and size of the image and also find its magnification.
Answer
232.8k+ views
Hint We are given with the height of the object, the object distance and the focal length of the lens and are asked to find the image distance, magnification and the height of the image. Thus, we will use the formulas for finding these values taking into consideration the sign convention for lenses. We will use the lens formula and the formula for linear magnification for a lens.
Formulae Used:
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Where, $f$ is the focal length of the lens, $v$ is the image distance and $u$ is the object distance.
$m = \dfrac{{{h_i}}}{{{h_o}}} = \dfrac{v}{u}$
Where, $m$ is the linear magnification by the lens, ${h_i}$ is the height of the image and ${h_o}$ is the height of the object.
Complete Step By Step Solution
Here,
The lens is a convex one.
Thus, focal length is positive
Thus,
$f = + 10cm$
The object is placed in front of the lens
Thus,
$u = - 15cm$
Now,
Applying the lens formula,
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Further, we get
$\dfrac{1}{v} = \dfrac{1}{f} + \dfrac{1}{u}$
Thus, we get
$\dfrac{1}{v} = \dfrac{1}{{ + 10}} + \dfrac{1}{{( - 15)}}$
Further, we get
$\dfrac{1}{v} = \dfrac{1}{{10}} - \dfrac{1}{{15}}$
Taking LCM and calculating, we get
$\dfrac{1}{v} = \dfrac{{3 - 2}}{{30}}$
Thus, we get
$v = + 30cm$
Now,
Applying the formula for linear magnification
$m = \dfrac{v}{u} = \dfrac{{ + 30}}{{ - 15}}$
Further, we get
$m = - 2$
Again,
$m = \dfrac{{{h_i}}}{{{h_o}}}$
Now,
The object is upright above the principal axis.
Thus,
${h_o} = + 2cm$
Thus,
$ - 2 = \dfrac{{{h_i}}}{{ + 2}} \Rightarrow {h_i} = - 4cm$
Hence, the image is formed $30cm$ from the lens. The image formed is real and inverted in nature. The size of the image is $4cm$ and the lens produces a linear magnification of $ - 2$.
Note The value of magnification is negative and thus the image formed is real. The value of the magnification is greater than one thus the image will be enlarged. The value of height is negative which signifies that the image is inverted that means it is below the principal axis.
Formulae Used:
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Where, $f$ is the focal length of the lens, $v$ is the image distance and $u$ is the object distance.
$m = \dfrac{{{h_i}}}{{{h_o}}} = \dfrac{v}{u}$
Where, $m$ is the linear magnification by the lens, ${h_i}$ is the height of the image and ${h_o}$ is the height of the object.
Complete Step By Step Solution
Here,
The lens is a convex one.
Thus, focal length is positive
Thus,
$f = + 10cm$
The object is placed in front of the lens
Thus,
$u = - 15cm$
Now,
Applying the lens formula,
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Further, we get
$\dfrac{1}{v} = \dfrac{1}{f} + \dfrac{1}{u}$
Thus, we get
$\dfrac{1}{v} = \dfrac{1}{{ + 10}} + \dfrac{1}{{( - 15)}}$
Further, we get
$\dfrac{1}{v} = \dfrac{1}{{10}} - \dfrac{1}{{15}}$
Taking LCM and calculating, we get
$\dfrac{1}{v} = \dfrac{{3 - 2}}{{30}}$
Thus, we get
$v = + 30cm$
Now,
Applying the formula for linear magnification
$m = \dfrac{v}{u} = \dfrac{{ + 30}}{{ - 15}}$
Further, we get
$m = - 2$
Again,
$m = \dfrac{{{h_i}}}{{{h_o}}}$
Now,
The object is upright above the principal axis.
Thus,
${h_o} = + 2cm$
Thus,
$ - 2 = \dfrac{{{h_i}}}{{ + 2}} \Rightarrow {h_i} = - 4cm$
Hence, the image is formed $30cm$ from the lens. The image formed is real and inverted in nature. The size of the image is $4cm$ and the lens produces a linear magnification of $ - 2$.
Note The value of magnification is negative and thus the image formed is real. The value of the magnification is greater than one thus the image will be enlarged. The value of height is negative which signifies that the image is inverted that means it is below the principal axis.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding How a Current Loop Acts as a Magnetic Dipole

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Electric field due to uniformly charged sphere class 12 physics JEE_Main

