
80% of the radioactive nuclei present in a sample are found to remain undecayed after one day. The percentage of undecayed nuclei left after two days will be ______________.
A. 64
B. 20
C. 46
D. 80
Answer
221.4k+ views
Hint: Radioactive decay is the spontaneous breakdown of an atomic nucleus resulting in the release of energy and matter from the nucleus. Radioactivity follows first order i.e. the Rate of decay of the nuclei at a given time is directly proportional to concentration of the nuclei at that point of time.
Complete Step by Step Solution: By using the formula written below, we can solve this question:
$K=\dfrac{2.303}{t}\log \left( \dfrac{{{N}_{o}}}{N} \right)$ ……. (I)
Where, ${{N}_{o}}$ is the initial amount of substance before the decay process starts.
N is the final amount of substance left after the decay process ends i.e. undecayed sample.
t is the time period in which the decay process continues.
According to the question, 80% of the radioactive nuclei present in a sample are found to remain undecayed after one day.
Hence put all values in equation (I)
$K=\dfrac{2.303}{1}\log \left( \dfrac{100}{80} \right)$ ………(II)
Now, the percentage of undecayed nuclei left after two days will be, N1
$K=\dfrac{2.303}{t}\log \left( \dfrac{100}{{{N}_{o}}} \right)$ ………. (III)
Compare equation (II) and equation (III):
$\dfrac{2.303}{1}\log \left( \dfrac{100}{80} \right)=\dfrac{2.303}{2}\log \left( \dfrac{100}{{{N}_{1}}} \right)$
${{\left( \dfrac{5}{4} \right)}^{2}}=\dfrac{100}{{{N}_{1}}}$
${{N}_{1}}$ = 64.
Hence, the percentage of undecayed nuclei left after two days will be 64.
Hence, option A is the correct answer.
Note:
Always remember, the formula $K=\dfrac{2.303}{t}\log \left( \dfrac{{{N}_{o}}}{N} \right)$ , where ${{N}_{o}}$ is initial amount of substance, N is the final amount of substance left, t is the time period and K is the constant.
Remember that a radioisotope has unstable nuclei that does not have enough binding energy to hold the nucleus together.
Radioisotopes would like to be stable isotopes so they are constantly changing to try and stabilize.
Complete Step by Step Solution: By using the formula written below, we can solve this question:
$K=\dfrac{2.303}{t}\log \left( \dfrac{{{N}_{o}}}{N} \right)$ ……. (I)
Where, ${{N}_{o}}$ is the initial amount of substance before the decay process starts.
N is the final amount of substance left after the decay process ends i.e. undecayed sample.
t is the time period in which the decay process continues.
According to the question, 80% of the radioactive nuclei present in a sample are found to remain undecayed after one day.
Hence put all values in equation (I)
$K=\dfrac{2.303}{1}\log \left( \dfrac{100}{80} \right)$ ………(II)
Now, the percentage of undecayed nuclei left after two days will be, N1
$K=\dfrac{2.303}{t}\log \left( \dfrac{100}{{{N}_{o}}} \right)$ ………. (III)
Compare equation (II) and equation (III):
$\dfrac{2.303}{1}\log \left( \dfrac{100}{80} \right)=\dfrac{2.303}{2}\log \left( \dfrac{100}{{{N}_{1}}} \right)$
${{\left( \dfrac{5}{4} \right)}^{2}}=\dfrac{100}{{{N}_{1}}}$
${{N}_{1}}$ = 64.
Hence, the percentage of undecayed nuclei left after two days will be 64.
Hence, option A is the correct answer.
Note:
Always remember, the formula $K=\dfrac{2.303}{t}\log \left( \dfrac{{{N}_{o}}}{N} \right)$ , where ${{N}_{o}}$ is initial amount of substance, N is the final amount of substance left, t is the time period and K is the constant.
Remember that a radioisotope has unstable nuclei that does not have enough binding energy to hold the nucleus together.
Radioisotopes would like to be stable isotopes so they are constantly changing to try and stabilize.
Recently Updated Pages
Is PPh3 a strong ligand class 12 chemistry JEE_Main

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Organic Compounds Containing Nitrogen Mock Test

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

JEE Main Mock Test 2025-26: Purification & Characterisation of Organic Compounds

JEE Main Chemical Kinetics Mock Test 2025-26: Free Practice Online

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

The D and F Block Elements Class 12 Chemistry Chapter 4 CBSE Notes - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

