
$28$ g of ${{N}_{2}}$ and $6$g of ${{H}_{2}}$ were kept at ${{400}^{{\mathrm O}}}C$ in $1$ litre vessel, the equilibrium mixture contained $27.54$g of $N{{H}_{3}}$. The approximate value of ${{K}_{c}}$ the above equation can be: ( in $mol{{e}^{-2}}litr{{e}^{2}}$).
A. $75$
B. $50$
C. $25$
D. $100$
Answer
162.3k+ views
Hint: ${{K}_{c}}$ is an equilibrium constant of a reversible reaction at equilibrium with respect to concentration. It describes the relationship between the concentration of reactants and products at equilibrium at a specific temperature. Putting these values in the corresponding equilibrium constant equation we can calculate ${{K}_{c}}$.
Formula used: Let us, consider a general reversible chemical reaction:
$aA+bB\rightleftharpoons mM+dD$
${{K}_{c}}=\frac{{{[M]}^{m}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}$ [In terms of concentration]
[M] = Concentration of product
[D] = Concentration of product
[A] = Concentration of reactant
[B] = Concentration of reactant
a,b and m,d are the stoichiometric coefficients of reactants and products respectively.
Complete step by step solution:
The equilibrium constant ${{K}_{c}}$ is defined by the ratio of molar concentrations of products to molar concentrations of reactants, each of them raised to the power equal to the stoichiometric coefficient at a specific temperature. ${{K}_{c}}$ has a specific value at a particular temperature and it is temperature dependent. If the temperature of the system changes, the value ${{K}_{c}}$ also changes.
Initially, we have $28g$${{N}_{2}}$ $1$ mole ${{N}_{2}}$ and $6g$${{H}_{2}}$ or $3$ mol ${{H}_{2}}$ in $1$ litre vessel.
${{N}_{2}} \ \ + \ \ 3{{H}_{2}} \ \ \rightleftharpoons \ \ 2N{{H}_{3}}$
Initial concentrations at time, $t=0$ $N_2 = \text{1mol},$ $ H_2 = \text{3mol}$ $NH_3 = \text{0mo}l$
Change in concentrations $\alpha $ $\alpha $ $0$
Time, $t={{t}_{eq}}$ $(1-\alpha )$ $3(1-\alpha )$ $2\alpha $
$\alpha $ is the change in concentration of reactants and products at equilibrium.
Given, the amount of $N{{H}_{3}}$ equilibrium $27.54g$
The number of moles $N{{H}_{3}}$ at equilibrium,$\text{n=}\frac{\text{m}}{M}=\frac{27.54}{17}=1.62$
Here m = mass of $N{{H}_{3}}$
M = Molar mass of$N{{H}_{3}}$
Given, $2\alpha =1.62$
Or, $\alpha =0.81$
According to the formula, ${{K}_{c}}=\frac{{{[N{{H}_{3}}]}^{2}}}{[{{N}_{2}}]{{[{{H}_{2}}]}^{3}}}$
$[N{{H}_{3}}]=\frac{{{n}_{N{{H}_{3}}}}}{V}=\frac{(2\times \alpha )mole}{1litre}=(2\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1 litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
${{K}_{c}}=\frac{{{[(2\alpha )mole.litr{{e}^{-1}}]}^{2}}}{[(1-\alpha )mole.litr{{e}^{-1}}]\times {{[3(1-\alpha )mole.litr{{e}^{-1}}]}^{3}}}$
${{K}_{c}}=\frac{{{(2\times 0.81)}^{2}}}{(1-0.81)\times {{[3(1-0.81)]}^{3}}}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=\frac{2.6244}{0.19\times 0.1852}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=74.58\approx 75mol{{e}^{-2}}litr{{e}^{2}}$
Therefore the approximate value of the equilibrium constant${{K}_{c}}$ is$75mol{{e}^{-2}}litr{{e}^{2}}$.
Thus, option (A) is correct.
Note: To approach these types of numerical problems, one must focus on writing an appropriate equilibrium constant equation according to the given equilibrium equation and also take care of stoichiometric coefficients of reactants and products. These will help to calculate the appropriate equilibrium constant value without any mistake.
Formula used: Let us, consider a general reversible chemical reaction:
$aA+bB\rightleftharpoons mM+dD$
${{K}_{c}}=\frac{{{[M]}^{m}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}$ [In terms of concentration]
[M] = Concentration of product
[D] = Concentration of product
[A] = Concentration of reactant
[B] = Concentration of reactant
a,b and m,d are the stoichiometric coefficients of reactants and products respectively.
Complete step by step solution:
The equilibrium constant ${{K}_{c}}$ is defined by the ratio of molar concentrations of products to molar concentrations of reactants, each of them raised to the power equal to the stoichiometric coefficient at a specific temperature. ${{K}_{c}}$ has a specific value at a particular temperature and it is temperature dependent. If the temperature of the system changes, the value ${{K}_{c}}$ also changes.
Initially, we have $28g$${{N}_{2}}$ $1$ mole ${{N}_{2}}$ and $6g$${{H}_{2}}$ or $3$ mol ${{H}_{2}}$ in $1$ litre vessel.
${{N}_{2}} \ \ + \ \ 3{{H}_{2}} \ \ \rightleftharpoons \ \ 2N{{H}_{3}}$
Initial concentrations at time, $t=0$ $N_2 = \text{1mol},$ $ H_2 = \text{3mol}$ $NH_3 = \text{0mo}l$
Change in concentrations $\alpha $ $\alpha $ $0$
Time, $t={{t}_{eq}}$ $(1-\alpha )$ $3(1-\alpha )$ $2\alpha $
$\alpha $ is the change in concentration of reactants and products at equilibrium.
Given, the amount of $N{{H}_{3}}$ equilibrium $27.54g$
The number of moles $N{{H}_{3}}$ at equilibrium,$\text{n=}\frac{\text{m}}{M}=\frac{27.54}{17}=1.62$
Here m = mass of $N{{H}_{3}}$
M = Molar mass of$N{{H}_{3}}$
Given, $2\alpha =1.62$
Or, $\alpha =0.81$
According to the formula, ${{K}_{c}}=\frac{{{[N{{H}_{3}}]}^{2}}}{[{{N}_{2}}]{{[{{H}_{2}}]}^{3}}}$
$[N{{H}_{3}}]=\frac{{{n}_{N{{H}_{3}}}}}{V}=\frac{(2\times \alpha )mole}{1litre}=(2\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1 litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
${{K}_{c}}=\frac{{{[(2\alpha )mole.litr{{e}^{-1}}]}^{2}}}{[(1-\alpha )mole.litr{{e}^{-1}}]\times {{[3(1-\alpha )mole.litr{{e}^{-1}}]}^{3}}}$
${{K}_{c}}=\frac{{{(2\times 0.81)}^{2}}}{(1-0.81)\times {{[3(1-0.81)]}^{3}}}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=\frac{2.6244}{0.19\times 0.1852}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=74.58\approx 75mol{{e}^{-2}}litr{{e}^{2}}$
Therefore the approximate value of the equilibrium constant${{K}_{c}}$ is$75mol{{e}^{-2}}litr{{e}^{2}}$.
Thus, option (A) is correct.
Note: To approach these types of numerical problems, one must focus on writing an appropriate equilibrium constant equation according to the given equilibrium equation and also take care of stoichiometric coefficients of reactants and products. These will help to calculate the appropriate equilibrium constant value without any mistake.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
