
$28$ g of ${{N}_{2}}$ and $6$g of ${{H}_{2}}$ were kept at ${{400}^{{\mathrm O}}}C$ in $1$ litre vessel, the equilibrium mixture contained $27.54$g of $N{{H}_{3}}$. The approximate value of ${{K}_{c}}$ the above equation can be: ( in $mol{{e}^{-2}}litr{{e}^{2}}$).
A. $75$
B. $50$
C. $25$
D. $100$
Answer
220.2k+ views
Hint: ${{K}_{c}}$ is an equilibrium constant of a reversible reaction at equilibrium with respect to concentration. It describes the relationship between the concentration of reactants and products at equilibrium at a specific temperature. Putting these values in the corresponding equilibrium constant equation we can calculate ${{K}_{c}}$.
Formula used: Let us, consider a general reversible chemical reaction:
$aA+bB\rightleftharpoons mM+dD$
${{K}_{c}}=\frac{{{[M]}^{m}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}$ [In terms of concentration]
[M] = Concentration of product
[D] = Concentration of product
[A] = Concentration of reactant
[B] = Concentration of reactant
a,b and m,d are the stoichiometric coefficients of reactants and products respectively.
Complete step by step solution:
The equilibrium constant ${{K}_{c}}$ is defined by the ratio of molar concentrations of products to molar concentrations of reactants, each of them raised to the power equal to the stoichiometric coefficient at a specific temperature. ${{K}_{c}}$ has a specific value at a particular temperature and it is temperature dependent. If the temperature of the system changes, the value ${{K}_{c}}$ also changes.
Initially, we have $28g$${{N}_{2}}$ $1$ mole ${{N}_{2}}$ and $6g$${{H}_{2}}$ or $3$ mol ${{H}_{2}}$ in $1$ litre vessel.
${{N}_{2}} \ \ + \ \ 3{{H}_{2}} \ \ \rightleftharpoons \ \ 2N{{H}_{3}}$
Initial concentrations at time, $t=0$ $N_2 = \text{1mol},$ $ H_2 = \text{3mol}$ $NH_3 = \text{0mo}l$
Change in concentrations $\alpha $ $\alpha $ $0$
Time, $t={{t}_{eq}}$ $(1-\alpha )$ $3(1-\alpha )$ $2\alpha $
$\alpha $ is the change in concentration of reactants and products at equilibrium.
Given, the amount of $N{{H}_{3}}$ equilibrium $27.54g$
The number of moles $N{{H}_{3}}$ at equilibrium,$\text{n=}\frac{\text{m}}{M}=\frac{27.54}{17}=1.62$
Here m = mass of $N{{H}_{3}}$
M = Molar mass of$N{{H}_{3}}$
Given, $2\alpha =1.62$
Or, $\alpha =0.81$
According to the formula, ${{K}_{c}}=\frac{{{[N{{H}_{3}}]}^{2}}}{[{{N}_{2}}]{{[{{H}_{2}}]}^{3}}}$
$[N{{H}_{3}}]=\frac{{{n}_{N{{H}_{3}}}}}{V}=\frac{(2\times \alpha )mole}{1litre}=(2\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1 litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
${{K}_{c}}=\frac{{{[(2\alpha )mole.litr{{e}^{-1}}]}^{2}}}{[(1-\alpha )mole.litr{{e}^{-1}}]\times {{[3(1-\alpha )mole.litr{{e}^{-1}}]}^{3}}}$
${{K}_{c}}=\frac{{{(2\times 0.81)}^{2}}}{(1-0.81)\times {{[3(1-0.81)]}^{3}}}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=\frac{2.6244}{0.19\times 0.1852}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=74.58\approx 75mol{{e}^{-2}}litr{{e}^{2}}$
Therefore the approximate value of the equilibrium constant${{K}_{c}}$ is$75mol{{e}^{-2}}litr{{e}^{2}}$.
Thus, option (A) is correct.
Note: To approach these types of numerical problems, one must focus on writing an appropriate equilibrium constant equation according to the given equilibrium equation and also take care of stoichiometric coefficients of reactants and products. These will help to calculate the appropriate equilibrium constant value without any mistake.
Formula used: Let us, consider a general reversible chemical reaction:
$aA+bB\rightleftharpoons mM+dD$
${{K}_{c}}=\frac{{{[M]}^{m}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}$ [In terms of concentration]
[M] = Concentration of product
[D] = Concentration of product
[A] = Concentration of reactant
[B] = Concentration of reactant
a,b and m,d are the stoichiometric coefficients of reactants and products respectively.
Complete step by step solution:
The equilibrium constant ${{K}_{c}}$ is defined by the ratio of molar concentrations of products to molar concentrations of reactants, each of them raised to the power equal to the stoichiometric coefficient at a specific temperature. ${{K}_{c}}$ has a specific value at a particular temperature and it is temperature dependent. If the temperature of the system changes, the value ${{K}_{c}}$ also changes.
Initially, we have $28g$${{N}_{2}}$ $1$ mole ${{N}_{2}}$ and $6g$${{H}_{2}}$ or $3$ mol ${{H}_{2}}$ in $1$ litre vessel.
${{N}_{2}} \ \ + \ \ 3{{H}_{2}} \ \ \rightleftharpoons \ \ 2N{{H}_{3}}$
Initial concentrations at time, $t=0$ $N_2 = \text{1mol},$ $ H_2 = \text{3mol}$ $NH_3 = \text{0mo}l$
Change in concentrations $\alpha $ $\alpha $ $0$
Time, $t={{t}_{eq}}$ $(1-\alpha )$ $3(1-\alpha )$ $2\alpha $
$\alpha $ is the change in concentration of reactants and products at equilibrium.
Given, the amount of $N{{H}_{3}}$ equilibrium $27.54g$
The number of moles $N{{H}_{3}}$ at equilibrium,$\text{n=}\frac{\text{m}}{M}=\frac{27.54}{17}=1.62$
Here m = mass of $N{{H}_{3}}$
M = Molar mass of$N{{H}_{3}}$
Given, $2\alpha =1.62$
Or, $\alpha =0.81$
According to the formula, ${{K}_{c}}=\frac{{{[N{{H}_{3}}]}^{2}}}{[{{N}_{2}}]{{[{{H}_{2}}]}^{3}}}$
$[N{{H}_{3}}]=\frac{{{n}_{N{{H}_{3}}}}}{V}=\frac{(2\times \alpha )mole}{1litre}=(2\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1 litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
$[{{H}_{2}}]=\frac{{{n}_{{{H}_{2}}}}}{V}=\frac{3(1-\alpha )mole}{1litre}=3(1-\alpha )mole.lir{{e}^{-1}}$
${{K}_{c}}=\frac{{{[(2\alpha )mole.litr{{e}^{-1}}]}^{2}}}{[(1-\alpha )mole.litr{{e}^{-1}}]\times {{[3(1-\alpha )mole.litr{{e}^{-1}}]}^{3}}}$
${{K}_{c}}=\frac{{{(2\times 0.81)}^{2}}}{(1-0.81)\times {{[3(1-0.81)]}^{3}}}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=\frac{2.6244}{0.19\times 0.1852}mol{{e}^{-2}}litr{{e}^{2}}$
${{K}_{c}}=74.58\approx 75mol{{e}^{-2}}litr{{e}^{2}}$
Therefore the approximate value of the equilibrium constant${{K}_{c}}$ is$75mol{{e}^{-2}}litr{{e}^{2}}$.
Thus, option (A) is correct.
Note: To approach these types of numerical problems, one must focus on writing an appropriate equilibrium constant equation according to the given equilibrium equation and also take care of stoichiometric coefficients of reactants and products. These will help to calculate the appropriate equilibrium constant value without any mistake.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

