
If\[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\]. Then find the value of \[X\].
A. \[\left[ {\begin{array}{*{20}{c}}5&7\end{array}} \right]\]
B. \[\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
C. \[\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5&7\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Answer
228.3k+ views
Hint: First, solve the given equation \[AX = B\] for the value of \[X\] by pre-multiplying both sides by \[{A^{ - 1}}\]. Then calculate the determinant of the matrix \[A\]. If the value of the determinant is non-zero. Then calculate the adjoint matrix of the given matrix and substitute the values in the formula for the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Substitute the values of the determinant and adjoint matrix in the equation for \[X\]. Solve the equation by using the scalar and matrix multiplication methods and get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\].
Let’s simplify the given equation \[AX = B\].
Pre-multiply both sides by \[{A^{ - 1}}\].
\[{A^{ - 1}}AX = {A^{ - 1}}B\]
\[ \Rightarrow IX = {A^{ - 1}}B\] , where \[I\] is an identity matrix.
\[ \Rightarrow X = {A^{ - 1}}B\]
\[ \Rightarrow X = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)B\] \[.....\left( 1 \right)\]
Since the product of a matrix and an identity matrix is an original matrix.
Now calculate the value of \[{A^{ - 1}}\].
To find the inverse matrix, first, calculate the determinant of the matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = \left( { - 1} \right) \times \left( { - 1} \right) - 2 \times 2\]
\[ \Rightarrow \left| A \right| = 1 - 4\]
\[ \Rightarrow \left| A \right| = - 3\] \[.....\left( 2 \right)\]
Since the value of the determinant is non-zero. So, the inverse matrix for the given matrix \[A\] exists.
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\] \[.....\left( 3 \right)\]
Substitute the values of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
We get,
\[X = \dfrac{1}{{ - 3}}\left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
Simplify the right-hand side of the above equation by using the scalar multiplication and matrix multiplication methods.
\[X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3}}&{\dfrac{2}{3}}\\{\dfrac{2}{3}}&{\dfrac{1}{3}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3} \times 3 + \dfrac{2}{3} \times 1}\\{\dfrac{2}{3} \times 3 + \dfrac{1}{3} \times 1}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{1 + \dfrac{2}{3}}\\{2 + \dfrac{1}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{3}}\\{\dfrac{7}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\].
Let’s simplify the given equation \[AX = B\].
Pre-multiply both sides by \[{A^{ - 1}}\].
\[{A^{ - 1}}AX = {A^{ - 1}}B\]
\[ \Rightarrow IX = {A^{ - 1}}B\] , where \[I\] is an identity matrix.
\[ \Rightarrow X = {A^{ - 1}}B\]
\[ \Rightarrow X = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)B\] \[.....\left( 1 \right)\]
Since the product of a matrix and an identity matrix is an original matrix.
Now calculate the value of \[{A^{ - 1}}\].
To find the inverse matrix, first, calculate the determinant of the matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = \left( { - 1} \right) \times \left( { - 1} \right) - 2 \times 2\]
\[ \Rightarrow \left| A \right| = 1 - 4\]
\[ \Rightarrow \left| A \right| = - 3\] \[.....\left( 2 \right)\]
Since the value of the determinant is non-zero. So, the inverse matrix for the given matrix \[A\] exists.
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\] \[.....\left( 3 \right)\]
Substitute the values of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
We get,
\[X = \dfrac{1}{{ - 3}}\left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
Simplify the right-hand side of the above equation by using the scalar multiplication and matrix multiplication methods.
\[X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3}}&{\dfrac{2}{3}}\\{\dfrac{2}{3}}&{\dfrac{1}{3}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3} \times 3 + \dfrac{2}{3} \times 1}\\{\dfrac{2}{3} \times 3 + \dfrac{1}{3} \times 1}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{1 + \dfrac{2}{3}}\\{2 + \dfrac{1}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{3}}\\{\dfrac{7}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
Recently Updated Pages
If A left beginarray20c3457endarray right then find class 12 maths JEE_Advanced

If u left x2 + y2 + z2 rightdfrac12 then prove that class 12 maths JEE_Advanced

If for the matrix A A3 I then find A 1 A A2 B A3 C class 12 maths JEE_Advanced

If A left beginarray20c22 32endarray right and B left class 12 maths JEE_Advanced

Find the inverse matrix of the matrix left beginarray20c012123311endarray class 12 maths JEE_Advanced

Let C1 and C2 be two biased coins such that the probabilities class 12 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

