
If\[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\]. Then find the value of \[X\].
A. \[\left[ {\begin{array}{*{20}{c}}5&7\end{array}} \right]\]
B. \[\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
C. \[\dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5&7\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Answer
162.9k+ views
Hint: First, solve the given equation \[AX = B\] for the value of \[X\] by pre-multiplying both sides by \[{A^{ - 1}}\]. Then calculate the determinant of the matrix \[A\]. If the value of the determinant is non-zero. Then calculate the adjoint matrix of the given matrix and substitute the values in the formula for the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Substitute the values of the determinant and adjoint matrix in the equation for \[X\]. Solve the equation by using the scalar and matrix multiplication methods and get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\].
Let’s simplify the given equation \[AX = B\].
Pre-multiply both sides by \[{A^{ - 1}}\].
\[{A^{ - 1}}AX = {A^{ - 1}}B\]
\[ \Rightarrow IX = {A^{ - 1}}B\] , where \[I\] is an identity matrix.
\[ \Rightarrow X = {A^{ - 1}}B\]
\[ \Rightarrow X = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)B\] \[.....\left( 1 \right)\]
Since the product of a matrix and an identity matrix is an original matrix.
Now calculate the value of \[{A^{ - 1}}\].
To find the inverse matrix, first, calculate the determinant of the matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = \left( { - 1} \right) \times \left( { - 1} \right) - 2 \times 2\]
\[ \Rightarrow \left| A \right| = 1 - 4\]
\[ \Rightarrow \left| A \right| = - 3\] \[.....\left( 2 \right)\]
Since the value of the determinant is non-zero. So, the inverse matrix for the given matrix \[A\] exists.
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\] \[.....\left( 3 \right)\]
Substitute the values of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
We get,
\[X = \dfrac{1}{{ - 3}}\left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
Simplify the right-hand side of the above equation by using the scalar multiplication and matrix multiplication methods.
\[X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3}}&{\dfrac{2}{3}}\\{\dfrac{2}{3}}&{\dfrac{1}{3}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3} \times 3 + \dfrac{2}{3} \times 1}\\{\dfrac{2}{3} \times 3 + \dfrac{1}{3} \times 1}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{1 + \dfrac{2}{3}}\\{2 + \dfrac{1}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{3}}\\{\dfrac{7}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right]\], \[B = \left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\], and \[AX = B\].
Let’s simplify the given equation \[AX = B\].
Pre-multiply both sides by \[{A^{ - 1}}\].
\[{A^{ - 1}}AX = {A^{ - 1}}B\]
\[ \Rightarrow IX = {A^{ - 1}}B\] , where \[I\] is an identity matrix.
\[ \Rightarrow X = {A^{ - 1}}B\]
\[ \Rightarrow X = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)B\] \[.....\left( 1 \right)\]
Since the product of a matrix and an identity matrix is an original matrix.
Now calculate the value of \[{A^{ - 1}}\].
To find the inverse matrix, first, calculate the determinant of the matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = \left( { - 1} \right) \times \left( { - 1} \right) - 2 \times 2\]
\[ \Rightarrow \left| A \right| = 1 - 4\]
\[ \Rightarrow \left| A \right| = - 3\] \[.....\left( 2 \right)\]
Since the value of the determinant is non-zero. So, the inverse matrix for the given matrix \[A\] exists.
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\] \[.....\left( 3 \right)\]
Substitute the values of the equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
We get,
\[X = \dfrac{1}{{ - 3}}\left[ {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
Simplify the right-hand side of the above equation by using the scalar multiplication and matrix multiplication methods.
\[X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3}}&{\dfrac{2}{3}}\\{\dfrac{2}{3}}&{\dfrac{1}{3}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}3\\1\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{1}{3} \times 3 + \dfrac{2}{3} \times 1}\\{\dfrac{2}{3} \times 3 + \dfrac{1}{3} \times 1}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{1 + \dfrac{2}{3}}\\{2 + \dfrac{1}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{3}}\\{\dfrac{7}{3}}\end{array}} \right]\]
\[ \Rightarrow X = \dfrac{1}{3}\left[ {\begin{array}{*{20}{c}}5\\7\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that the product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NEET 2025 – Every New Update You Need to Know
