
If \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\] , \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\] and \[Q = PA{P^T}\], then find the value of \[{P^T}\left( {{Q^{2005}}} \right)P\].
A. \[\left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{2005}\\1&0\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}1&{2005}\\{\dfrac{{\sqrt 3 }}{2}}&1\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}1&{\dfrac{{\sqrt 3 }}{2}}\\0&{2005}\end{array}} \right]\]
Answer
162.6k+ views
Hint: Here, 2 matrices are given. First, simplify the required equation by using the given equation and basic identities of matrices. In the end, substitute the values in the equation and solve it to get the required answer.
Formula used:
The transposition of a matrix is found by interchanging its rows into columns or columns into rows.
For a matrix \[A\], the transpose matrix is denoted by \[{A^T}\]
Complete step by step solution:
The given matrices are \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\], and \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\].
The given equation is \[Q = PA{P^T}\].
Let’s calculate the matrix multiplication of \[{P^T}\] and \[P\].
\[{P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}}\\{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2} \times \left( { - \dfrac{1}{2}} \right) + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2}}\\{ - \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{2}}&{\left( { - \dfrac{1}{2}} \right) \times \left( { - \dfrac{1}{2}} \right) + \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{3}{4} + \dfrac{1}{4}}&{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}\\{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}&{\dfrac{1}{4} + \dfrac{3}{4}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ \Rightarrow {P^T}P = I\] \[.....\left( 1 \right)\]
Now solve the required equation \[{P^T}\left( {{Q^{2005}}} \right)P\] by using the given equation \[Q = PA{P^T}\].
\[{P^T}\left( {{Q^{2005}}} \right)P = {P^T}{\left( {PA{P^T}} \right)^{2005}}P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}\left( {PA{P^T}} \right)\left( {PA{P^T}} \right)....2005\, times P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}PA\left( {{P^T}P} \right)A\left( {{P^T}P} \right)....2005 \, times \left( {{P^T}P} \right)\]
Use the equation \[\left( 1 \right)\].
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = IA\left( I \right)A\left( I \right)....2005\, times \left( I \right)\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = AA....2005 \, times\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}}\]
Here \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\]
\[{A^3} = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3\\0&1\end{array}} \right]\]
After observing the above pattern, we get that
\[{A^n} = \left[ {\begin{array}{*{20}{c}}1&n\\0&1\end{array}} \right]\]
Therefore, \[{P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}} = \left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Also, the transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[N][M] is obtained by changing A[i][j] to A[j][i].
Formula used:
The transposition of a matrix is found by interchanging its rows into columns or columns into rows.
For a matrix \[A\], the transpose matrix is denoted by \[{A^T}\]
Complete step by step solution:
The given matrices are \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\], and \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\].
The given equation is \[Q = PA{P^T}\].
Let’s calculate the matrix multiplication of \[{P^T}\] and \[P\].
\[{P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}}\\{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2} \times \left( { - \dfrac{1}{2}} \right) + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2}}\\{ - \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{2}}&{\left( { - \dfrac{1}{2}} \right) \times \left( { - \dfrac{1}{2}} \right) + \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{3}{4} + \dfrac{1}{4}}&{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}\\{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}&{\dfrac{1}{4} + \dfrac{3}{4}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ \Rightarrow {P^T}P = I\] \[.....\left( 1 \right)\]
Now solve the required equation \[{P^T}\left( {{Q^{2005}}} \right)P\] by using the given equation \[Q = PA{P^T}\].
\[{P^T}\left( {{Q^{2005}}} \right)P = {P^T}{\left( {PA{P^T}} \right)^{2005}}P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}\left( {PA{P^T}} \right)\left( {PA{P^T}} \right)....2005\, times P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}PA\left( {{P^T}P} \right)A\left( {{P^T}P} \right)....2005 \, times \left( {{P^T}P} \right)\]
Use the equation \[\left( 1 \right)\].
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = IA\left( I \right)A\left( I \right)....2005\, times \left( I \right)\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = AA....2005 \, times\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}}\]
Here \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\]
\[{A^3} = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3\\0&1\end{array}} \right]\]
After observing the above pattern, we get that
\[{A^n} = \left[ {\begin{array}{*{20}{c}}1&n\\0&1\end{array}} \right]\]
Therefore, \[{P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}} = \left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Also, the transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[N][M] is obtained by changing A[i][j] to A[j][i].
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NEET 2025 – Every New Update You Need to Know
