
If \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\] , \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\] and \[Q = PA{P^T}\], then find the value of \[{P^T}\left( {{Q^{2005}}} \right)P\].
A. \[\left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{2005}\\1&0\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}1&{2005}\\{\dfrac{{\sqrt 3 }}{2}}&1\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}1&{\dfrac{{\sqrt 3 }}{2}}\\0&{2005}\end{array}} \right]\]
Answer
163.5k+ views
Hint: Here, 2 matrices are given. First, simplify the required equation by using the given equation and basic identities of matrices. In the end, substitute the values in the equation and solve it to get the required answer.
Formula used:
The transposition of a matrix is found by interchanging its rows into columns or columns into rows.
For a matrix \[A\], the transpose matrix is denoted by \[{A^T}\]
Complete step by step solution:
The given matrices are \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\], and \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\].
The given equation is \[Q = PA{P^T}\].
Let’s calculate the matrix multiplication of \[{P^T}\] and \[P\].
\[{P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}}\\{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2} \times \left( { - \dfrac{1}{2}} \right) + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2}}\\{ - \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{2}}&{\left( { - \dfrac{1}{2}} \right) \times \left( { - \dfrac{1}{2}} \right) + \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{3}{4} + \dfrac{1}{4}}&{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}\\{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}&{\dfrac{1}{4} + \dfrac{3}{4}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ \Rightarrow {P^T}P = I\] \[.....\left( 1 \right)\]
Now solve the required equation \[{P^T}\left( {{Q^{2005}}} \right)P\] by using the given equation \[Q = PA{P^T}\].
\[{P^T}\left( {{Q^{2005}}} \right)P = {P^T}{\left( {PA{P^T}} \right)^{2005}}P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}\left( {PA{P^T}} \right)\left( {PA{P^T}} \right)....2005\, times P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}PA\left( {{P^T}P} \right)A\left( {{P^T}P} \right)....2005 \, times \left( {{P^T}P} \right)\]
Use the equation \[\left( 1 \right)\].
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = IA\left( I \right)A\left( I \right)....2005\, times \left( I \right)\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = AA....2005 \, times\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}}\]
Here \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\]
\[{A^3} = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3\\0&1\end{array}} \right]\]
After observing the above pattern, we get that
\[{A^n} = \left[ {\begin{array}{*{20}{c}}1&n\\0&1\end{array}} \right]\]
Therefore, \[{P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}} = \left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Also, the transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[N][M] is obtained by changing A[i][j] to A[j][i].
Formula used:
The transposition of a matrix is found by interchanging its rows into columns or columns into rows.
For a matrix \[A\], the transpose matrix is denoted by \[{A^T}\]
Complete step by step solution:
The given matrices are \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\], and \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\].
The given equation is \[Q = PA{P^T}\].
Let’s calculate the matrix multiplication of \[{P^T}\] and \[P\].
\[{P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}}\\{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2} \times \left( { - \dfrac{1}{2}} \right) + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2}}\\{ - \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{2}}&{\left( { - \dfrac{1}{2}} \right) \times \left( { - \dfrac{1}{2}} \right) + \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{3}{4} + \dfrac{1}{4}}&{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}\\{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}&{\dfrac{1}{4} + \dfrac{3}{4}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ \Rightarrow {P^T}P = I\] \[.....\left( 1 \right)\]
Now solve the required equation \[{P^T}\left( {{Q^{2005}}} \right)P\] by using the given equation \[Q = PA{P^T}\].
\[{P^T}\left( {{Q^{2005}}} \right)P = {P^T}{\left( {PA{P^T}} \right)^{2005}}P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}\left( {PA{P^T}} \right)\left( {PA{P^T}} \right)....2005\, times P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}PA\left( {{P^T}P} \right)A\left( {{P^T}P} \right)....2005 \, times \left( {{P^T}P} \right)\]
Use the equation \[\left( 1 \right)\].
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = IA\left( I \right)A\left( I \right)....2005\, times \left( I \right)\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = AA....2005 \, times\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}}\]
Here \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\]
\[{A^3} = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3\\0&1\end{array}} \right]\]
After observing the above pattern, we get that
\[{A^n} = \left[ {\begin{array}{*{20}{c}}1&n\\0&1\end{array}} \right]\]
Therefore, \[{P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}} = \left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Also, the transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[N][M] is obtained by changing A[i][j] to A[j][i].
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis
