
If \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\] , \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\] and \[Q = PA{P^T}\], then find the value of \[{P^T}\left( {{Q^{2005}}} \right)P\].
A. \[\left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{2005}\\1&0\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}1&{2005}\\{\dfrac{{\sqrt 3 }}{2}}&1\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}1&{\dfrac{{\sqrt 3 }}{2}}\\0&{2005}\end{array}} \right]\]
Answer
232.8k+ views
Hint: Here, 2 matrices are given. First, simplify the required equation by using the given equation and basic identities of matrices. In the end, substitute the values in the equation and solve it to get the required answer.
Formula used:
The transposition of a matrix is found by interchanging its rows into columns or columns into rows.
For a matrix \[A\], the transpose matrix is denoted by \[{A^T}\]
Complete step by step solution:
The given matrices are \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\], and \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\].
The given equation is \[Q = PA{P^T}\].
Let’s calculate the matrix multiplication of \[{P^T}\] and \[P\].
\[{P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}}\\{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2} \times \left( { - \dfrac{1}{2}} \right) + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2}}\\{ - \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{2}}&{\left( { - \dfrac{1}{2}} \right) \times \left( { - \dfrac{1}{2}} \right) + \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{3}{4} + \dfrac{1}{4}}&{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}\\{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}&{\dfrac{1}{4} + \dfrac{3}{4}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ \Rightarrow {P^T}P = I\] \[.....\left( 1 \right)\]
Now solve the required equation \[{P^T}\left( {{Q^{2005}}} \right)P\] by using the given equation \[Q = PA{P^T}\].
\[{P^T}\left( {{Q^{2005}}} \right)P = {P^T}{\left( {PA{P^T}} \right)^{2005}}P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}\left( {PA{P^T}} \right)\left( {PA{P^T}} \right)....2005\, times P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}PA\left( {{P^T}P} \right)A\left( {{P^T}P} \right)....2005 \, times \left( {{P^T}P} \right)\]
Use the equation \[\left( 1 \right)\].
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = IA\left( I \right)A\left( I \right)....2005\, times \left( I \right)\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = AA....2005 \, times\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}}\]
Here \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\]
\[{A^3} = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3\\0&1\end{array}} \right]\]
After observing the above pattern, we get that
\[{A^n} = \left[ {\begin{array}{*{20}{c}}1&n\\0&1\end{array}} \right]\]
Therefore, \[{P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}} = \left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Also, the transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[N][M] is obtained by changing A[i][j] to A[j][i].
Formula used:
The transposition of a matrix is found by interchanging its rows into columns or columns into rows.
For a matrix \[A\], the transpose matrix is denoted by \[{A^T}\]
Complete step by step solution:
The given matrices are \[P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\], and \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\].
The given equation is \[Q = PA{P^T}\].
Let’s calculate the matrix multiplication of \[{P^T}\] and \[P\].
\[{P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}}\\{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}}\\{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \times \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2} \times \left( { - \dfrac{1}{2}} \right) + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2}}\\{ - \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{2}}&{\left( { - \dfrac{1}{2}} \right) \times \left( { - \dfrac{1}{2}} \right) + \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}{\dfrac{3}{4} + \dfrac{1}{4}}&{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}\\{ - \dfrac{{\sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4}}&{\dfrac{1}{4} + \dfrac{3}{4}}\end{array}} \right]\]
\[ \Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[ \Rightarrow {P^T}P = I\] \[.....\left( 1 \right)\]
Now solve the required equation \[{P^T}\left( {{Q^{2005}}} \right)P\] by using the given equation \[Q = PA{P^T}\].
\[{P^T}\left( {{Q^{2005}}} \right)P = {P^T}{\left( {PA{P^T}} \right)^{2005}}P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}\left( {PA{P^T}} \right)\left( {PA{P^T}} \right)....2005\, times P\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {P^T}PA\left( {{P^T}P} \right)A\left( {{P^T}P} \right)....2005 \, times \left( {{P^T}P} \right)\]
Use the equation \[\left( 1 \right)\].
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = IA\left( I \right)A\left( I \right)....2005\, times \left( I \right)\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = AA....2005 \, times\]
\[ \Rightarrow {P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}}\]
Here \[A = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\]
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\]
\[{A^3} = \left[ {\begin{array}{*{20}{c}}1&2\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&1\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3\\0&1\end{array}} \right]\]
After observing the above pattern, we get that
\[{A^n} = \left[ {\begin{array}{*{20}{c}}1&n\\0&1\end{array}} \right]\]
Therefore, \[{P^T}\left( {{Q^{2005}}} \right)P = {A^{2005}} = \left[ {\begin{array}{*{20}{c}}1&{2005}\\0&1\end{array}} \right]\]
Hence the correct option is A.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Also, the transpose of a matrix is obtained by changing rows to columns and columns to rows. In other words, transpose of A[N][M] is obtained by changing A[i][j] to A[j][i].
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

