
If matrix \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]. Then what is the value of \[K\]?
A. 7
B. \[ - 7\]
C. \[\dfrac{1}{7}\]
D. \[11\]
Answer
163.8k+ views
Hint: First, compare the given value of the inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Then calculate the determinant of the matrix \[A\] to the required value of \[K\].
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
