
If matrix \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]. Then what is the value of \[K\]?
A. 7
B. \[ - 7\]
C. \[\dfrac{1}{7}\]
D. \[11\]
Answer
197.1k+ views
Hint: First, compare the given value of the inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Then calculate the determinant of the matrix \[A\] to the required value of \[K\].
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Recently Updated Pages
JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics
