
If matrix \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]. Then what is the value of \[K\]?
A. 7
B. \[ - 7\]
C. \[\dfrac{1}{7}\]
D. \[11\]
Answer
231.9k+ views
Hint: First, compare the given value of the inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Then calculate the determinant of the matrix \[A\] to the required value of \[K\].
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Recently Updated Pages
JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

