
If \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\] , then find \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\].
A. \[\left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}3&{ - 2}\\2&2\end{array}} \right]\]
C. \[\dfrac{1}{{10}}\left[ {\begin{array}{*{20}{c}}2&2\\{ - 2}&3\end{array}} \right]\]
D. \[\dfrac{1}{{10}}\left[ {\begin{array}{*{20}{c}}3&2\\{ - 2}&2\end{array}} \right]\]
Answer
232.8k+ views
Hint: First we will check whether the given matrices are invertible or not. To solve the question, we will apply the formula of the inverse of the matrix product. Again, apply the formula inverse of the inverse matrix. Then substitute the matrix A and B and solve it.
Formula Used:
A matrix A is invertible, if \[\left| A \right| \ne 0\].
Inverse of matrix product formula: \[{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\], where A and B invertible matrix.
Inverse of inverse matrix formula is \[{\left( {{A^{ - 1}}} \right)^{ - 1}} = A\]
Complete step by step solution:
Given matrices are \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\].
Now calculating the determinate of both matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right|\]
\[ = 2 \cdot 2 - 2 \cdot \left( { - 3} \right)\]
\[ = 10 \ne 0\]
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|\]
\[ = 0 \cdot 0 - 1 \cdot \left( { - 1} \right)\]
\[ = 1 \ne 0\]
Sine, determinant of both the matrices \[ne 0\]
Thus both matrices are invertible.
Apply the formula of the inverse of matrix product on \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[ = {\left( {{A^{ - 1}}} \right)^{ - 1}}{\left( {{B^{ - 1}}} \right)^{ - 1}}\]
Now applying the inverse of the inverse matrix
\[ = AB\]
Substitute \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
By matrix multiplication,
\[ = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{2 \cdot 0 + 2 \cdot 1}&{2 \cdot \left( { - 1} \right) + 2 \cdot 0}\\{ - 3 \cdot 0 + 2 \cdot 1}&{ - 3 \cdot \left( { - 1} \right) + 2 \cdot 0}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
Hence option A is the correct option.
Note: Students often do a common mistake to solve the question. They do not apply the inverse of matrix multiplication. The correct way is: we apply the inverse of matrix multiplication, then the formula inverse of the inverse matrix. Remember the matrix must be invertible.
Formula Used:
A matrix A is invertible, if \[\left| A \right| \ne 0\].
Inverse of matrix product formula: \[{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\], where A and B invertible matrix.
Inverse of inverse matrix formula is \[{\left( {{A^{ - 1}}} \right)^{ - 1}} = A\]
Complete step by step solution:
Given matrices are \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\].
Now calculating the determinate of both matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right|\]
\[ = 2 \cdot 2 - 2 \cdot \left( { - 3} \right)\]
\[ = 10 \ne 0\]
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|\]
\[ = 0 \cdot 0 - 1 \cdot \left( { - 1} \right)\]
\[ = 1 \ne 0\]
Sine, determinant of both the matrices \[ne 0\]
Thus both matrices are invertible.
Apply the formula of the inverse of matrix product on \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[ = {\left( {{A^{ - 1}}} \right)^{ - 1}}{\left( {{B^{ - 1}}} \right)^{ - 1}}\]
Now applying the inverse of the inverse matrix
\[ = AB\]
Substitute \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
By matrix multiplication,
\[ = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{2 \cdot 0 + 2 \cdot 1}&{2 \cdot \left( { - 1} \right) + 2 \cdot 0}\\{ - 3 \cdot 0 + 2 \cdot 1}&{ - 3 \cdot \left( { - 1} \right) + 2 \cdot 0}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
Hence option A is the correct option.
Note: Students often do a common mistake to solve the question. They do not apply the inverse of matrix multiplication. The correct way is: we apply the inverse of matrix multiplication, then the formula inverse of the inverse matrix. Remember the matrix must be invertible.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

