
If \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\] , then find \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\].
A. \[\left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}3&{ - 2}\\2&2\end{array}} \right]\]
C. \[\dfrac{1}{{10}}\left[ {\begin{array}{*{20}{c}}2&2\\{ - 2}&3\end{array}} \right]\]
D. \[\dfrac{1}{{10}}\left[ {\begin{array}{*{20}{c}}3&2\\{ - 2}&2\end{array}} \right]\]
Answer
161.1k+ views
Hint: First we will check whether the given matrices are invertible or not. To solve the question, we will apply the formula of the inverse of the matrix product. Again, apply the formula inverse of the inverse matrix. Then substitute the matrix A and B and solve it.
Formula Used:
A matrix A is invertible, if \[\left| A \right| \ne 0\].
Inverse of matrix product formula: \[{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\], where A and B invertible matrix.
Inverse of inverse matrix formula is \[{\left( {{A^{ - 1}}} \right)^{ - 1}} = A\]
Complete step by step solution:
Given matrices are \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\].
Now calculating the determinate of both matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right|\]
\[ = 2 \cdot 2 - 2 \cdot \left( { - 3} \right)\]
\[ = 10 \ne 0\]
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|\]
\[ = 0 \cdot 0 - 1 \cdot \left( { - 1} \right)\]
\[ = 1 \ne 0\]
Sine, determinant of both the matrices \[ne 0\]
Thus both matrices are invertible.
Apply the formula of the inverse of matrix product on \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[ = {\left( {{A^{ - 1}}} \right)^{ - 1}}{\left( {{B^{ - 1}}} \right)^{ - 1}}\]
Now applying the inverse of the inverse matrix
\[ = AB\]
Substitute \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
By matrix multiplication,
\[ = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{2 \cdot 0 + 2 \cdot 1}&{2 \cdot \left( { - 1} \right) + 2 \cdot 0}\\{ - 3 \cdot 0 + 2 \cdot 1}&{ - 3 \cdot \left( { - 1} \right) + 2 \cdot 0}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
Hence option A is the correct option.
Note: Students often do a common mistake to solve the question. They do not apply the inverse of matrix multiplication. The correct way is: we apply the inverse of matrix multiplication, then the formula inverse of the inverse matrix. Remember the matrix must be invertible.
Formula Used:
A matrix A is invertible, if \[\left| A \right| \ne 0\].
Inverse of matrix product formula: \[{\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\], where A and B invertible matrix.
Inverse of inverse matrix formula is \[{\left( {{A^{ - 1}}} \right)^{ - 1}} = A\]
Complete step by step solution:
Given matrices are \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\].
Now calculating the determinate of both matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right|\]
\[ = 2 \cdot 2 - 2 \cdot \left( { - 3} \right)\]
\[ = 10 \ne 0\]
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right|\]
\[ = 0 \cdot 0 - 1 \cdot \left( { - 1} \right)\]
\[ = 1 \ne 0\]
Sine, determinant of both the matrices \[ne 0\]
Thus both matrices are invertible.
Apply the formula of the inverse of matrix product on \[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[{\left( {{B^{ - 1}}{A^{ - 1}}} \right)^{ - 1}}\]
\[ = {\left( {{A^{ - 1}}} \right)^{ - 1}}{\left( {{B^{ - 1}}} \right)^{ - 1}}\]
Now applying the inverse of the inverse matrix
\[ = AB\]
Substitute \[A = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\] and \[B = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
By matrix multiplication,
\[ = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 3}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}{2 \cdot 0 + 2 \cdot 1}&{2 \cdot \left( { - 1} \right) + 2 \cdot 0}\\{ - 3 \cdot 0 + 2 \cdot 1}&{ - 3 \cdot \left( { - 1} \right) + 2 \cdot 0}\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}2&{ - 2}\\2&3\end{array}} \right]\]
Hence option A is the correct option.
Note: Students often do a common mistake to solve the question. They do not apply the inverse of matrix multiplication. The correct way is: we apply the inverse of matrix multiplication, then the formula inverse of the inverse matrix. Remember the matrix must be invertible.
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
