
If \[A = \left[ {\begin{array}{*{20}{c}}1&2\\3&{ - 5}\end{array}} \right]\], then find the value of \[{A^{ - 1}}\].
A. \[\left[ {\begin{array}{*{20}{c}}{ - 5}&{ - 2}\\{ - 3}&1\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}{\dfrac{5}{{11}}}&{\dfrac{2}{{11}}}\\{\dfrac{3}{{11}}}&{\dfrac{{ - 1}}{{11}}}\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}{ - 2}&4\\{ - 3}&6\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}5&2\\3&{ - 1}\end{array}} \right]\]
Answer
162.6k+ views
Hint: A \[2 \times 2\] matrix is given. First, calculate the determinant of the matrix \[A\]. If the value of the determinant is non-zero, then calculate the adjoint matrix of the given matrix and substitute the values in the formula for the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\] to get the required answer. If the value of the determinant is zero, then declare that the inverse matrix does not exist.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}1&2\\3&{ - 5}\end{array}} \right]\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = 1 \times \left( { - 5} \right) - 3 \times 2\]
\[ \Rightarrow \left| A \right| = - 5 - 6\]
\[ \Rightarrow \left| A \right| = - 11\] \[.....\left( 1 \right)\]
Since the determinant is a non-zero value. So, the inverse matrix exists for the given matrix \[A\].
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 5}&{ - 2}\\{ - 3}&1\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the values of the equation \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 11}}\left[ {\begin{array}{*{20}{c}}{ - 5}&{ - 2}\\{ - 3}&1\end{array}} \right]\]
Apply the property of scalar multiplication.
\[{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{{11}}}&{\dfrac{2}{{11}}}\\{\dfrac{3}{{11}}}&{\dfrac{{ - 1}}{{11}}}\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that if the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
So, to find the adjoint matrix of a \[2 \times 2\] matrix:
Interchange the elements of the principal diagonal.
Change the signs of the elements of the other diagonal.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
The determinant of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[\left| A \right| = ad - bc\]
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}1&2\\3&{ - 5}\end{array}} \right]\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula for the determinant of a \[2 \times 2\] matrix.
We get,
\[\left| A \right| = 1 \times \left( { - 5} \right) - 3 \times 2\]
\[ \Rightarrow \left| A \right| = - 5 - 6\]
\[ \Rightarrow \left| A \right| = - 11\] \[.....\left( 1 \right)\]
Since the determinant is a non-zero value. So, the inverse matrix exists for the given matrix \[A\].
Now find out the adjoint matrix of the given matrix \[A\].
Apply the rule for the adjoint matrix of a \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}{ - 5}&{ - 2}\\{ - 3}&1\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the values of the equation \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{{ - 11}}\left[ {\begin{array}{*{20}{c}}{ - 5}&{ - 2}\\{ - 3}&1\end{array}} \right]\]
Apply the property of scalar multiplication.
\[{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{\dfrac{5}{{11}}}&{\dfrac{2}{{11}}}\\{\dfrac{3}{{11}}}&{\dfrac{{ - 1}}{{11}}}\end{array}} \right]\]
Hence the correct option is B.
Note: Students should keep in mind that if the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. But for a \[2 \times 2\] matrix, we don’t need to calculate the cofactor matrix.
So, to find the adjoint matrix of a \[2 \times 2\] matrix:
Interchange the elements of the principal diagonal.
Change the signs of the elements of the other diagonal.
Recently Updated Pages
JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced Study Plan 2025: Expert Tips and Preparation Guide

JEE Advanced 2022 Physics Question Paper 2 with Solutions

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2025 Surface Chemistry Revision Notes - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NEET 2025 – Every New Update You Need to Know
