Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Properties of Determinants

ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon
widget title icon
Latest Updates

Definition of Determinants 

Let a\[_{1}\]x + b\[_{1}\] = 0 …..(1) and a\[_{2}\]x + b\[_{2}\] = 0 ……(2)

Be two simple equations in x. 

From equation (1) we get, 

a\[_{1}\]x = -b\[_{1}\] or, x = - \[\frac{b_{1}}{a_{1}}\];

Similarly, from equation (2) we get,

x = - \[\frac{b_{2}}{a_{2}}\];

Hence, the x-eliminate of the equations (1) and (2) is

- \[\frac{b_{1}}{a_{1}}\] = - \[\frac{b_{2}}{a_{2}}\] or a\[_{1}\]b\[_{2}\] - a\[_{2}\]b\[_{1}\] = 0 

The left-hand expression a\[_{1}\]b\[_{2}\] - a\[_{2}\]b\[_{1}\] of equation (3) is called the determinant of the second-order and is denoted by the symbol 

\[\begin{vmatrix} a_{1} & b_{1} \end{vmatrix}\]

\[\begin{vmatrix} a_{2} & b_{2} \end{vmatrix}\]

The four letters  a\[_{1}\], b\[_{1}\], a\[_{2}\], b\[_{2}\] are called the elements or constituents of the determinant. The elements  a\[_{1}\], b\[_{1}\] form the first row, and a\[_{2}\], b\[_{2}\] form the second row while the elements  a\[_{1}\], a\[_{2}\] and  b\[_{1}\], b\[_{2}\] constitute the first and the second columns respectively. a\[_{1}\]b\[_{2}\] are the elements along the leading or the principal diagonal and b\[_{1}\], a\[_{2}\] are the elements along the secondary diagonal. Thus, an arrangement of four letters (or numbers) of the second-order and its value is the expression a\[_{1}\]b\[_{2}\] - a\[_{2}\]b\[_{1}\].

Hence by definition, we have,

\[\begin{vmatrix} a_{1} & b_{1} \end{vmatrix}\]

\[\begin{vmatrix} a_{2} & b_{2} \end{vmatrix}\] = a\[_{1}\]b\[_{2}\] - a\[_{2}\]b\[_{1}\].


Properties of a Determinant

Property 1: The value of the determinant remains unaltered by changing its rows into columns and columns into rows. 

Property 2: If two adjacent rows (or columns) of a determinant are interchanged, the numerical value of the determinant remains the same but its sign is altered. 

Property 3: If two rows (or columns) of a determinant are identical, the value of the determinant is zero.

Property 4: If each element of a row (or a column) of a determinant be multiplied by the same quantity, then the determinant is multiplied by that quantity. 

Property 5: The value of the determinant remains unaltered if each element of a row (or column) is increased or decreased by a constant multiple of the corresponding elements of another row (or column).


Adjugate And Reciprocal Determinants

The adjoint or adjugate of a given determinant D is the determinant whose elements are co-factors of the corresponding elements D and is denoted by the symbol D’ .

The reciprocal or inverse of a given determinant D is the determinant which is formed by dividing every element of D’ , the adjoint of D, by D and is denoted by D’’ .


Solved Examples 


Example 1) Without expanding show that,

\[\begin{vmatrix} 5 & 2 & 3 \end{vmatrix}\]

\[\begin{vmatrix} 7 & 3 & 4 \end{vmatrix}\] = 0

\[\begin{vmatrix} 9 & 4 & 5 \end{vmatrix}\]


Solution 1) We have 

\[\begin{vmatrix} 5 & 2 & 3 \end{vmatrix}\] \[\begin{vmatrix} 5 & 2+3 & 3 \end{vmatrix}\]

\[\begin{vmatrix} 7 & 3 & 4 \end{vmatrix}\] = \[\begin{vmatrix} 7 & 3+4 & 4 \end{vmatrix}\]

\[\begin{vmatrix} 9 & 4 & 5 \end{vmatrix}\] \[\begin{vmatrix} 9 & 4+5 & 5 \end{vmatrix}\]

Replacing the 2nd column by C\[_{2}\] + C\[_{3}\]

\[\begin{vmatrix} 5 & 2 & 3 \end{vmatrix}\]

\[\begin{vmatrix} 7 & 3 & 4 \end{vmatrix}\] = 0

\[\begin{vmatrix} 9 & 4 & 5 \end{vmatrix}\] 

The first and the second column are identical 

(Proved) 


Example 2) Without expanding show that,

\[\begin{vmatrix} a+b & 2a+b & 3a+b \end{vmatrix}\] 

\[\begin{vmatrix} 2a+b & 3a+b & 4a+b \end{vmatrix}\] = 0

\[\begin{vmatrix} 4a+b & 5a+b & 6a+b \end{vmatrix}\] 


Solution 2) We have 

               \[\begin{vmatrix} a+b & 2a+b & 3a+b \end{vmatrix}\] 

L.H.S.=   \[\begin{vmatrix} 2a+b & 3a+b & 4a+b \end{vmatrix}\]

               \[\begin{vmatrix} 4a+b & 5a+b & 6a+b \end{vmatrix}\] 

\[\begin{vmatrix} a+b & a & a \end{vmatrix}\] 

\[\begin{vmatrix} 2a+b & a & a \end{vmatrix}\] [C’\[_{2}\] = C\[_{2}\] - C\[_{1}\]] and [C’\[_{3}\] = C\[_{3}\] - C\[_{2}\]]

\[\begin{vmatrix} 4a+b & a & a \end{vmatrix}\] 

= 0 [2nd and 3rd column are identical]

(Proved)


Example 3) If x + y + z = 0 then show that \[\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}\]

\[\begin{vmatrix} x & y & z \end{vmatrix}\] = 0

\[\begin{vmatrix} x^{3} & y^{3} & z^{3} \end{vmatrix}\]


Solution 3) We have,

\[\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}\] \[\begin{vmatrix} 0 & 0 & 1 \end{vmatrix}\]

\[\begin{vmatrix} x & y & z \end{vmatrix}\] = \[\begin{vmatrix} x - y & y - z & y \end{vmatrix}\] [C’\[_{1}\] = C\[_{1}\] - C\[_{2}\]] and [C’\[_{2}\] = C\[_{2}\] - C\[_{3}\]]

\[\begin{vmatrix} x^{3} & y^{3} & z^{3} \end{vmatrix}\] \[\begin{vmatrix} x^{3} - y^{3} & y^{3} - z^{3} & z^{3} \end{vmatrix}\]

= (x - y)(y\[^{3}\] - z\[^{3}\]) - (y - z)(x\[^{3}\] - y\[^{3}\]) expanding by the first row

= (x - y)(y - z)[(y\[^{2}\] + yz + z\[^{2}\]) - (x\[^{2}\] + xy + y\[^{2}\])]

=  (x - y)(y - z)[y(z - x) + (z\[^{2}\] - x\[^{2}\])]

= (x - y)(y - z)(z - x)(y + z + x)

= 0[x + y + z = 0(given)]

(Proved)


Example 4) Eliminate x,y, and z from the following equations: 

\[\frac{bx}{y+z}\] = a, \[\frac{cy}{z+x}\] = b, \[\frac{az}{x+y}\] = c


Solution 4) The given equations are,

\[\frac{bx}{y+z}\] = a  or, bx - ay - az = 0

\[\frac{cy}{z+x}\] = b  or, bx - cy + bz = 0 

and \[\frac{az}{x+y}\] = c or, cx + cy - az = 0

Eliminate x,y, and z from the above equations, we get,

\[\begin{vmatrix} b & -a & -a \end{vmatrix}\] 

\[\begin{vmatrix} b & -c & b \end{vmatrix}\] = 0

\[\begin{vmatrix} c & c & -a \end{vmatrix}\] 

or, b(ca - bc) + a(-ab - bc) - a(bc + c\[^{2}\]) = 0

or, abc - b\[^{2}\]c - a\[^{2}\]b - abc - abc - ac\[^{2}\] = 0

or, a\[^{2}\]b + b\[^{2}\]c + c\[^{2}\]a + abc = 0, which is the required result after elimination