Bohr’s Theory of Hydrogen Atoms

Bookmark added to your notes.
View Notes
×

The hydrogen atom played a special role in the history of physics by providing the key that unlocked the new mechanics that replaced Newtonian mechanics. It started with Johann Balmer’s discovery in 1884 of a mathematical formula for the wavelengths of some of the spectral lines emitted by hydrogen.

The next step was Rutherford’s discovery of the atomic nucleus in 1912. After that, one knew the basic structure of atoms, a positive nucleus surrounded by negative electrons. In a year’s time, Niels Bohr had a model of the hydrogen atom that could explain the spectral lines. Bohr introduced a new concept, the energy level. The electron in hydrogen had certain energy levels that were allowed in which sharp spectral lines came out as emission when the electron hopped from one energy level to another. To explain this level of energy, Bohr developed a model in which the electron had certain allowed orbits and the jump between energy levels corresponds to the electron moving from one allowed orbit to another.

The Classical Hydrogen Atom

With Rutherford’s discovery of the atomic nucleus, it became clear that atoms consisted of a positively charged nucleus surrounded by negatively charged electrons that were held to the nucleus by an electric force. Hydrogen would be the simplest atom consisting of one proton and one electron held together by a Coulomb force of magnitude.

[Formula Image to be added soon]]

As depicted in Equation 1, both the proton and the electron attract each other, but since the proton is 1836 times more massive than the electron, the proton should sit nearly at rest while the electron orbits around it.

The side view of circular motion is an up and down oscillations

[Image to be added soon]

Such a simple system is Hydrogen Atom which has known masses and known forces, so it should be a straightforward matter to make detailed predictions about the nature of the atom. We could use the orbit program, replacing the gravitational force GMm/r2 by e2/r2. We would predict that the electron moved in an elliptical orbit about the proton, obeying all of Kepler’s laws for orbital motion.

One important point we should take into account in our analysis of the hydrogen atom is that there is no need to worry about in our study of satellite motion. The electron is a charged particle and accelerated charged particles radiate electromagnetic waves. Suppose the electron was in a circular orbit moving at an angular velocity as shown in Figure (1a). If we were looking at the orbit from the side, as shown in Figure (1b), we would see an electron oscillating up and down with a velocity given by v=v0sin ?t.

If electrons oscillated up and down at a frequency ?, they produced radio waves of the same frequency. Thus Maxwell’s equations predict that the electron in the hydrogen atom should emit electromagnetic radiation and the frequency of the radiation should be the frequency at which the electron orbits the proton.

For an electron in a circular orbit, predicting the motion is quite easy. If an electron is in an orbit of radius r, moving at a speed v, its acceleration a is directed toward the centre of the circle and has a magnitude. 

[Formula 1 Image to be added soon]]

Using Equation 1 for the electric force and Equation 2 for the acceleration, and noting that the force is in the same direction as the acceleration, as indicated in Figure (2), Newton’s second law gives,

[Formula 2 Image to be added soon]]

One factor of r cancels and we can immediately solve for the electron’s speed v to get v2 = e2/mr, or

[Formula 3 Image to be added soon]]

The period of the electron’s orbit should be the distance travelled, divided by the speed v, or 2?r/v seconds per cycle, and the frequency should be the inverse of that, or v/2?r cycles per second. Using Equation 4 for v, we get

[Formula 4 Image to be added soon]]

According to Maxwell’s theory, this should also be the frequency of the radiation emitted by the electron.

FAQ (Frequently Asked Questions)

Q1. How Important is the Hydrogen atom in Bohr’s Theory of Hydrogen?

Ans: The hydrogen atom played a special role in the history of physics by providing the key that unlocked the new mechanics that replaced Newtonian mechanics. It started with Johann Balmer’s discovery in 1884 of a mathematical formula for the wavelengths of some of the spectral lines emitted by hydrogen.

Q2. What were the things which got clear with Rutherford's discovery of the atomic nucleus?

Ans: With Rutherford’s discovery of the atomic nucleus, it became clear that atoms consisted of a positively charged nucleus surrounded by negatively charged electrons that were held to the nucleus by an electric force. The simplest atom would be hydrogen consisting of one proton and one electron held together by a Coulomb force of magnitude.