Answer
Verified
365.1k+ views
Hint: The most general form of linear differential equations of first order is \[\dfrac{{dy}}{{dx}} + Py = Q\] , where P and Q are functions of x.
To solve such an equation multiply both sides by \[{e^{\smallint Pdx}}\] . Then the solution of this equation will be
\[y{e^{\smallint Pdx}} = \smallint Q{e^{\smallint Pdx}}dx + c\]
Another form of first order linear differential equation is \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\] , where $P_1$ and $Q_1$ are functions of y only. And the solution of such an equation is given by \[x.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c\]
Complete step by step answer:
Step 1: Rearranging the terms in \[(1 + \tan y)(dx - dy) + 2xdy = 0\]
Divide both sides of the equation by dy, we get
\[(1 + \tan y)(dx - dy) + 2xdy = 0\]
\[(1 + \tan y)(\dfrac{{dx}}{{dy}} - 1) + 2x = 0\]
Taking \[\dfrac{{dx}}{{dy}}\] separately we get
\[(1 + \tan y)(\dfrac{{dx}}{{dy}} - 1) + 2x = 0\]
\[(1 + \tan y)\dfrac{{dx}}{{dy}} - (1 + \tan y) + 2x = 0\]
\[(1 + \tan y)\dfrac{{dx}}{{dy}} + 2x = (1 + \tan y)\]
\[\dfrac{{dx}}{{dy}} + \dfrac{{2x}}{{1 + \tan y}} = 1\]
The above equation is in the form of first order linear differential equation, \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\]
Step 2: On comparing both equation \[\dfrac{{dx}}{{dy}} + \dfrac{{2x}}{{1 + \tan y}} = 1\] & \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\] , we get
\[{P_1} = \dfrac{{2x}}{{1 + \tan y}}\] & \[{Q_1} = 1\]
Step 3: finding the integrating factor (I.F)
As we know that, integrating factor is given by
\[I.F = {e^{\smallint {P_1}dy}}\]
Substituting the values we get,
\[I.F = {e^{\smallint \dfrac{2}{{1 + \tan y}}dy}}\]
We know that \[\tan y = \dfrac{{\sin y}}{{\cos y}}\] , replacing tan y with its value, we get
\[ \Rightarrow \] \[I.F = {e^{\smallint \dfrac{{2\cos y}}{{\cos y + \sin y}}dy}}\]
Now adding and subtracting siny in numerator, we get
\[ \Rightarrow \] \[I.F = {e^{\smallint \dfrac{{\cos y + \sin y + \cos y - \sin y}}{{\cos y + \sin y}}dy}}\]
\[ \Rightarrow \] \[I.F = {e^{\smallint 1 + \dfrac{{\cos y - \sin y}}{{\cos y + \sin y}}dy}}\]
\[ \Rightarrow \] \[I.F = {e^{y + \log (\cos y + \sin y)}}\] \[\{ \int {\dfrac{{\cos y - \sin y}}{{\cos y + \sin y}}} dy = \dfrac{{d\log (\cos y + \sin y)}}{{dy}}\} \]
\[ \Rightarrow \] \[I.F = {e^y}.(\cos y + \sin y)\]
Step 4: Determining the general solution
As we know that the general solution of linear first degree differential equation is given by,
\[x.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c\]
Substituting the values, we get
\[x.{e^y}.(\cos y + \sin y) = \int {1.} {e^y}(\cos y + \sin y)dy + C\]
\[ \Rightarrow \] \[x.{e^y}.(\cos y + \sin y) = \int {{e^y}(\sin y + \cos y)dy} + C\]
Since, \[\int {{e^y}} \left[ {f(y) + f'(y)} \right]dy = {e^y}.f(y) + C\]
Therefore, we have
\[x.{e^y}.(\cos y + \sin y) = {e^y}\sin y + C\]
Cancelling $e^y$ from both sides, we get
\[ \Rightarrow \] \[x.(\cos y + \sin y) = \sin y + C{e^{ - y}}\]
Note: This function \[g(x) = {e^{\int {Pdx} }}\] is called Integrating Factor (I.F.) of the given differential equation.
The general solution of the first order linear differential equation of the form \[\dfrac{{dy}}{{dx}} + Py = Q\] is given by \[y{e^{\smallint Pdx}} = \smallint Q{e^{\smallint Pdx}}dx + c\]
The general solution of the first order linear differential equation of the form \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\] is given by \[x.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c\]
To solve such an equation multiply both sides by \[{e^{\smallint Pdx}}\] . Then the solution of this equation will be
\[y{e^{\smallint Pdx}} = \smallint Q{e^{\smallint Pdx}}dx + c\]
Another form of first order linear differential equation is \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\] , where $P_1$ and $Q_1$ are functions of y only. And the solution of such an equation is given by \[x.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c\]
Complete step by step answer:
Step 1: Rearranging the terms in \[(1 + \tan y)(dx - dy) + 2xdy = 0\]
Divide both sides of the equation by dy, we get
\[(1 + \tan y)(dx - dy) + 2xdy = 0\]
\[(1 + \tan y)(\dfrac{{dx}}{{dy}} - 1) + 2x = 0\]
Taking \[\dfrac{{dx}}{{dy}}\] separately we get
\[(1 + \tan y)(\dfrac{{dx}}{{dy}} - 1) + 2x = 0\]
\[(1 + \tan y)\dfrac{{dx}}{{dy}} - (1 + \tan y) + 2x = 0\]
\[(1 + \tan y)\dfrac{{dx}}{{dy}} + 2x = (1 + \tan y)\]
\[\dfrac{{dx}}{{dy}} + \dfrac{{2x}}{{1 + \tan y}} = 1\]
The above equation is in the form of first order linear differential equation, \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\]
Step 2: On comparing both equation \[\dfrac{{dx}}{{dy}} + \dfrac{{2x}}{{1 + \tan y}} = 1\] & \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\] , we get
\[{P_1} = \dfrac{{2x}}{{1 + \tan y}}\] & \[{Q_1} = 1\]
Step 3: finding the integrating factor (I.F)
As we know that, integrating factor is given by
\[I.F = {e^{\smallint {P_1}dy}}\]
Substituting the values we get,
\[I.F = {e^{\smallint \dfrac{2}{{1 + \tan y}}dy}}\]
We know that \[\tan y = \dfrac{{\sin y}}{{\cos y}}\] , replacing tan y with its value, we get
\[ \Rightarrow \] \[I.F = {e^{\smallint \dfrac{{2\cos y}}{{\cos y + \sin y}}dy}}\]
Now adding and subtracting siny in numerator, we get
\[ \Rightarrow \] \[I.F = {e^{\smallint \dfrac{{\cos y + \sin y + \cos y - \sin y}}{{\cos y + \sin y}}dy}}\]
\[ \Rightarrow \] \[I.F = {e^{\smallint 1 + \dfrac{{\cos y - \sin y}}{{\cos y + \sin y}}dy}}\]
\[ \Rightarrow \] \[I.F = {e^{y + \log (\cos y + \sin y)}}\] \[\{ \int {\dfrac{{\cos y - \sin y}}{{\cos y + \sin y}}} dy = \dfrac{{d\log (\cos y + \sin y)}}{{dy}}\} \]
\[ \Rightarrow \] \[I.F = {e^y}.(\cos y + \sin y)\]
Step 4: Determining the general solution
As we know that the general solution of linear first degree differential equation is given by,
\[x.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c\]
Substituting the values, we get
\[x.{e^y}.(\cos y + \sin y) = \int {1.} {e^y}(\cos y + \sin y)dy + C\]
\[ \Rightarrow \] \[x.{e^y}.(\cos y + \sin y) = \int {{e^y}(\sin y + \cos y)dy} + C\]
Since, \[\int {{e^y}} \left[ {f(y) + f'(y)} \right]dy = {e^y}.f(y) + C\]
Therefore, we have
\[x.{e^y}.(\cos y + \sin y) = {e^y}\sin y + C\]
Cancelling $e^y$ from both sides, we get
\[ \Rightarrow \] \[x.(\cos y + \sin y) = \sin y + C{e^{ - y}}\]
Note: This function \[g(x) = {e^{\int {Pdx} }}\] is called Integrating Factor (I.F.) of the given differential equation.
The general solution of the first order linear differential equation of the form \[\dfrac{{dy}}{{dx}} + Py = Q\] is given by \[y{e^{\smallint Pdx}} = \smallint Q{e^{\smallint Pdx}}dx + c\]
The general solution of the first order linear differential equation of the form \[\dfrac{{dx}}{{dy}} + {P_1}x = {Q_1}\] is given by \[x.{e^{\smallint {P_1}dx}} = \smallint ({Q_1} \times {e^{\smallint {P_1}dx}})dy + c\]
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations