
Let \[x = {4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}\] and \[y = \dfrac{1}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}}\] and xy=4, then the sum of the cubes of the real values (s) of k is
A.1
B.5
C.8
D.9
Answer
468.6k+ views
Hint: In this question the value of x and y are given and the relation between the x and y are also given so by using the logarithm power rule and the inverse property we will further solve the equation and then find the value of k.
Complete step-by-step answer:
Given functions,
\[x = {4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}\]
\[y = \dfrac{1}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}}\]
\[xy = 4 - - (i)\]
We can write (i) as by substituting x and y
\[
xy = 4 \\
\Rightarrow \dfrac{{{4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}}}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}} = 4 \\
\]
Now as we know \[4 = {2^2}\] and \[32 = {2^5}\] so we can further write the equation as
\[\dfrac{{{2^{2{{\log }_2}{{\left( {{9^{k - 1}} + 7} \right)}^{\dfrac{1}{2}}}}}}}{{{2^{5\log {}_2{{\left( {{3^{k - 1}} + 1} \right)}^{\dfrac{1}{5}}}}}}} = 4\]
Now by using the logarithm power rule (\[{\log _a}{x^p} = p{\log _a}x\] ) we can further write the above equation as
\[
\Rightarrow \dfrac{{{2^{2 \times \dfrac{1}{2}{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{5 \times \dfrac{1}{5}\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \\
\Rightarrow \dfrac{{{2^{{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \;
\]
Now by applying the inverse property of logarithm (\[{b^{{{\log }_b}x}} = x\] ) in the above obtained equation we can further write
\[
\Rightarrow \dfrac{{{2^{{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \\
\Rightarrow \dfrac{{{9^{k - 1}} + 7}}{{{3^{k - 1}} + 1}} = 4 \;
\]
Hence by further solving (cross multiplying) this we get
\[
\Rightarrow {9^{k - 1}} + 7 = 4\left( {{3^{k - 1}} + 1} \right) \\
{\left( 3 \right)^{2\left( {k - 1} \right)}} + 7 = 4\left( {{3^{k - 1}} + 1} \right) \\
\Rightarrow {3^{2k}} \cdot {3^{ - 2}} + 7 = 4\left( {{3^k} \cdot {3^{ - 1}} + 1} \right) \\
{\left( {{3^k}} \right)^2} \cdot {3^{ - 2}} + 7 = 4\left( {{3^k} \cdot {3^{ - 1}} + 1} \right) \\
\]
Now let\[{3^k} = p\] , so we can further write the equation as
\[{p^2} \cdot {3^{ - 2}} + 7 = 4\left( {p \cdot {3^{ - 1}} + 1} \right)\]
Hence by further solving, we get
\[
\Rightarrow \dfrac{{{p^2}}}{9} + 7 = 4\left( {\dfrac{p}{3} + 1} \right) \\
\Rightarrow \dfrac{{{p^2}}}{9} + 7 = \dfrac{4}{3}p + 4 \\
\Rightarrow \dfrac{{{p^2}}}{9} - \dfrac{4}{3}p + 3 = 0 \\
{p^2} - 12p + 27 = 0 \;
\]
Now we solve the obtained quadratic equation to find the value of p,
\[
\Rightarrow {p^2} - 12p + 27 = 0 \\
\Rightarrow {p^2} - 3p - 9p + 27 = 0 \\
\Rightarrow p\left( {p - 3} \right) - 9\left( {p - 3} \right) = 0 \\
\Rightarrow \left( {p - 3} \right)\left( {p - 9} \right) = 0 \;
\]
Hence we get the values of \[p = 3,9\]
Now, since \[{3^k} = p\] , hence we get the value of k as
When \[p = 3\]
So,\[{3^k} = {3^1}\]
Therefore \[k = 1\]
When \[p = 9\]
So, \[{3^k} = {3^2}\]
Therefore \[k = 2\]
Hence the option which satisfies the value of k is Option A.
So, the correct answer is “Option A”.
Note: Students often confuse the power rule and the inverse rule of the logarithmic function. Power rule of the logarithmic function is \[{\log _a}{x^p} = p{\log _a}x\] while the inverse rule of the logarithmic function is \[{b^{{{\log }_b}x}} = x\] .
Complete step-by-step answer:
Given functions,
\[x = {4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}\]
\[y = \dfrac{1}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}}\]
\[xy = 4 - - (i)\]
We can write (i) as by substituting x and y
\[
xy = 4 \\
\Rightarrow \dfrac{{{4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}}}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}} = 4 \\
\]
Now as we know \[4 = {2^2}\] and \[32 = {2^5}\] so we can further write the equation as
\[\dfrac{{{2^{2{{\log }_2}{{\left( {{9^{k - 1}} + 7} \right)}^{\dfrac{1}{2}}}}}}}{{{2^{5\log {}_2{{\left( {{3^{k - 1}} + 1} \right)}^{\dfrac{1}{5}}}}}}} = 4\]
Now by using the logarithm power rule (\[{\log _a}{x^p} = p{\log _a}x\] ) we can further write the above equation as
\[
\Rightarrow \dfrac{{{2^{2 \times \dfrac{1}{2}{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{5 \times \dfrac{1}{5}\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \\
\Rightarrow \dfrac{{{2^{{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \;
\]
Now by applying the inverse property of logarithm (\[{b^{{{\log }_b}x}} = x\] ) in the above obtained equation we can further write
\[
\Rightarrow \dfrac{{{2^{{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \\
\Rightarrow \dfrac{{{9^{k - 1}} + 7}}{{{3^{k - 1}} + 1}} = 4 \;
\]
Hence by further solving (cross multiplying) this we get
\[
\Rightarrow {9^{k - 1}} + 7 = 4\left( {{3^{k - 1}} + 1} \right) \\
{\left( 3 \right)^{2\left( {k - 1} \right)}} + 7 = 4\left( {{3^{k - 1}} + 1} \right) \\
\Rightarrow {3^{2k}} \cdot {3^{ - 2}} + 7 = 4\left( {{3^k} \cdot {3^{ - 1}} + 1} \right) \\
{\left( {{3^k}} \right)^2} \cdot {3^{ - 2}} + 7 = 4\left( {{3^k} \cdot {3^{ - 1}} + 1} \right) \\
\]
Now let\[{3^k} = p\] , so we can further write the equation as
\[{p^2} \cdot {3^{ - 2}} + 7 = 4\left( {p \cdot {3^{ - 1}} + 1} \right)\]
Hence by further solving, we get
\[
\Rightarrow \dfrac{{{p^2}}}{9} + 7 = 4\left( {\dfrac{p}{3} + 1} \right) \\
\Rightarrow \dfrac{{{p^2}}}{9} + 7 = \dfrac{4}{3}p + 4 \\
\Rightarrow \dfrac{{{p^2}}}{9} - \dfrac{4}{3}p + 3 = 0 \\
{p^2} - 12p + 27 = 0 \;
\]
Now we solve the obtained quadratic equation to find the value of p,
\[
\Rightarrow {p^2} - 12p + 27 = 0 \\
\Rightarrow {p^2} - 3p - 9p + 27 = 0 \\
\Rightarrow p\left( {p - 3} \right) - 9\left( {p - 3} \right) = 0 \\
\Rightarrow \left( {p - 3} \right)\left( {p - 9} \right) = 0 \;
\]
Hence we get the values of \[p = 3,9\]
Now, since \[{3^k} = p\] , hence we get the value of k as
When \[p = 3\]
So,\[{3^k} = {3^1}\]
Therefore \[k = 1\]
When \[p = 9\]
So, \[{3^k} = {3^2}\]
Therefore \[k = 2\]
Hence the option which satisfies the value of k is Option A.
So, the correct answer is “Option A”.
Note: Students often confuse the power rule and the inverse rule of the logarithmic function. Power rule of the logarithmic function is \[{\log _a}{x^p} = p{\log _a}x\] while the inverse rule of the logarithmic function is \[{b^{{{\log }_b}x}} = x\] .
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
