
Let x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$, then the value of a can be equal to:
(a) $\dfrac{2}{3}$
(b) $\dfrac{-2}{3}$
(c) $\dfrac{3}{2}$
(d) $\dfrac{-3}{2}$
Answer
553.8k+ views
Hint: We start solving the problem by adding the given two trigonometric equations and then using the trigonometric identity ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. We then make the necessary arrangements to get a quadratic equation in ‘a’. We then factorize the obtained quadratic equation and then equate the factors to zero to find the possible values of ‘a’.
Complete step by step answer:
According to the problem, we are given that x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$. We need to find the value of a.
Let us add the given equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$.
So, we have $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)+\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}$.
\[\Rightarrow \left( {{\tan }^{2}}x-{{\sec }^{2}}x \right)+\left( {{\tan }^{2}}y-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -\left( {{\sec }^{2}}x-{{\tan }^{2}}x \right)-\left( {{\sec }^{2}}y-{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\] ---(1)
From the trigonometric identities we have ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. Let us substitute this identity in equation (1).
\[\Rightarrow -1-1=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -2=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow {{a}^{2}}+\dfrac{5a}{6}-1=0\].
\[\Rightarrow \dfrac{6{{a}^{2}}+5a-6}{6}=0\].
\[\Rightarrow 6{{a}^{2}}+5a-6=0\].
Now, let us factorize this quadratic equation to find the value(s) of ‘a’.
\[\Rightarrow 6{{a}^{2}}+9a-4a-6=0\].
\[\Rightarrow \left( 3a-2 \right)\left( 2a+3 \right)=0\].
\[\Rightarrow 3a-2=0\] or \[2a+3=0\].
\[\Rightarrow 3a=2\] or $2a=-3$.
\[\Rightarrow a=\dfrac{2}{3}\] or $a=\dfrac{-3}{2}$.
So, the possible values of ‘a’ are $\dfrac{2}{3}$ or $\dfrac{-3}{2}$.
So, the correct answer is “Option a and d”.
Note: Whenever we get this type of problems, we try to make use of the trigonometric identities which reduces our calculation time and avoids confusion. We can also find the roots of the quadratic equation \[6{{a}^{2}}+5a-6=0\] by using the fact that the roots of the quadratic equation $p{{x}^{2}}+qx+r=0$ is $\dfrac{-q\pm \sqrt{{{q}^{2}}-4pr}}{2p}$. We should not confuse signs with trigonometric identities while solving this type of problem.
Complete step by step answer:
According to the problem, we are given that x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$. We need to find the value of a.
Let us add the given equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$.
So, we have $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)+\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}$.
\[\Rightarrow \left( {{\tan }^{2}}x-{{\sec }^{2}}x \right)+\left( {{\tan }^{2}}y-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -\left( {{\sec }^{2}}x-{{\tan }^{2}}x \right)-\left( {{\sec }^{2}}y-{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\] ---(1)
From the trigonometric identities we have ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. Let us substitute this identity in equation (1).
\[\Rightarrow -1-1=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -2=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow {{a}^{2}}+\dfrac{5a}{6}-1=0\].
\[\Rightarrow \dfrac{6{{a}^{2}}+5a-6}{6}=0\].
\[\Rightarrow 6{{a}^{2}}+5a-6=0\].
Now, let us factorize this quadratic equation to find the value(s) of ‘a’.
\[\Rightarrow 6{{a}^{2}}+9a-4a-6=0\].
\[\Rightarrow \left( 3a-2 \right)\left( 2a+3 \right)=0\].
\[\Rightarrow 3a-2=0\] or \[2a+3=0\].
\[\Rightarrow 3a=2\] or $2a=-3$.
\[\Rightarrow a=\dfrac{2}{3}\] or $a=\dfrac{-3}{2}$.
So, the possible values of ‘a’ are $\dfrac{2}{3}$ or $\dfrac{-3}{2}$.
So, the correct answer is “Option a and d”.
Note: Whenever we get this type of problems, we try to make use of the trigonometric identities which reduces our calculation time and avoids confusion. We can also find the roots of the quadratic equation \[6{{a}^{2}}+5a-6=0\] by using the fact that the roots of the quadratic equation $p{{x}^{2}}+qx+r=0$ is $\dfrac{-q\pm \sqrt{{{q}^{2}}-4pr}}{2p}$. We should not confuse signs with trigonometric identities while solving this type of problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

