
Let x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$, then the value of a can be equal to:
(a) $\dfrac{2}{3}$
(b) $\dfrac{-2}{3}$
(c) $\dfrac{3}{2}$
(d) $\dfrac{-3}{2}$
Answer
563.7k+ views
Hint: We start solving the problem by adding the given two trigonometric equations and then using the trigonometric identity ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. We then make the necessary arrangements to get a quadratic equation in ‘a’. We then factorize the obtained quadratic equation and then equate the factors to zero to find the possible values of ‘a’.
Complete step by step answer:
According to the problem, we are given that x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$. We need to find the value of a.
Let us add the given equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$.
So, we have $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)+\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}$.
\[\Rightarrow \left( {{\tan }^{2}}x-{{\sec }^{2}}x \right)+\left( {{\tan }^{2}}y-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -\left( {{\sec }^{2}}x-{{\tan }^{2}}x \right)-\left( {{\sec }^{2}}y-{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\] ---(1)
From the trigonometric identities we have ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. Let us substitute this identity in equation (1).
\[\Rightarrow -1-1=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -2=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow {{a}^{2}}+\dfrac{5a}{6}-1=0\].
\[\Rightarrow \dfrac{6{{a}^{2}}+5a-6}{6}=0\].
\[\Rightarrow 6{{a}^{2}}+5a-6=0\].
Now, let us factorize this quadratic equation to find the value(s) of ‘a’.
\[\Rightarrow 6{{a}^{2}}+9a-4a-6=0\].
\[\Rightarrow \left( 3a-2 \right)\left( 2a+3 \right)=0\].
\[\Rightarrow 3a-2=0\] or \[2a+3=0\].
\[\Rightarrow 3a=2\] or $2a=-3$.
\[\Rightarrow a=\dfrac{2}{3}\] or $a=\dfrac{-3}{2}$.
So, the possible values of ‘a’ are $\dfrac{2}{3}$ or $\dfrac{-3}{2}$.
So, the correct answer is “Option a and d”.
Note: Whenever we get this type of problems, we try to make use of the trigonometric identities which reduces our calculation time and avoids confusion. We can also find the roots of the quadratic equation \[6{{a}^{2}}+5a-6=0\] by using the fact that the roots of the quadratic equation $p{{x}^{2}}+qx+r=0$ is $\dfrac{-q\pm \sqrt{{{q}^{2}}-4pr}}{2p}$. We should not confuse signs with trigonometric identities while solving this type of problem.
Complete step by step answer:
According to the problem, we are given that x and y be 2 real numbers which satisfy the equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$. We need to find the value of a.
Let us add the given equations $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3$ and $\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)={{a}^{2}}$.
So, we have $\left( {{\tan }^{2}}x-{{\sec }^{2}}y \right)+\left( -{{\sec }^{2}}x+{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}$.
\[\Rightarrow \left( {{\tan }^{2}}x-{{\sec }^{2}}x \right)+\left( {{\tan }^{2}}y-{{\sec }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -\left( {{\sec }^{2}}x-{{\tan }^{2}}x \right)-\left( {{\sec }^{2}}y-{{\tan }^{2}}y \right)=\dfrac{5a}{6}-3+{{a}^{2}}\] ---(1)
From the trigonometric identities we have ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$. Let us substitute this identity in equation (1).
\[\Rightarrow -1-1=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow -2=\dfrac{5a}{6}-3+{{a}^{2}}\].
\[\Rightarrow {{a}^{2}}+\dfrac{5a}{6}-1=0\].
\[\Rightarrow \dfrac{6{{a}^{2}}+5a-6}{6}=0\].
\[\Rightarrow 6{{a}^{2}}+5a-6=0\].
Now, let us factorize this quadratic equation to find the value(s) of ‘a’.
\[\Rightarrow 6{{a}^{2}}+9a-4a-6=0\].
\[\Rightarrow \left( 3a-2 \right)\left( 2a+3 \right)=0\].
\[\Rightarrow 3a-2=0\] or \[2a+3=0\].
\[\Rightarrow 3a=2\] or $2a=-3$.
\[\Rightarrow a=\dfrac{2}{3}\] or $a=\dfrac{-3}{2}$.
So, the possible values of ‘a’ are $\dfrac{2}{3}$ or $\dfrac{-3}{2}$.
So, the correct answer is “Option a and d”.
Note: Whenever we get this type of problems, we try to make use of the trigonometric identities which reduces our calculation time and avoids confusion. We can also find the roots of the quadratic equation \[6{{a}^{2}}+5a-6=0\] by using the fact that the roots of the quadratic equation $p{{x}^{2}}+qx+r=0$ is $\dfrac{-q\pm \sqrt{{{q}^{2}}-4pr}}{2p}$. We should not confuse signs with trigonometric identities while solving this type of problem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

