
Write the differential equation for $y = a{e^{5x}} + b{e^{ - 5x}}$.
$
{\text{A}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = 25y \\
{\text{B}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = - 25y \\
{\text{C}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = - 5y \\
{\text{D}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = 5y \\
$
Answer
607.8k+ views
Hint: Here, we will proceed by differentiating the given function (which is in terms of x) with respect to x twice and then see which of the given options gives the same obtained differential equation.
Complete step-by-step answer:
Given function is $y = a{e^{5x}} + b{e^{ - 5x}}{\text{ }} \to {\text{(1)}}$
Differentiating the equation (1) with respect to x on both sides, we get
$
\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{e^{5x}} + b{e^{ - 5x}}} \right)}}{{dx}} = \dfrac{{d\left( {a{e^{5x}}} \right)}}{{dx}} + \dfrac{{d\left( {b{e^{ - 5x}}} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5a{e^{5x}} - 5b{e^{ - 5x}}{\text{ }} \to {\text{(2)}} \\
$
Again differentiating the equation (2) with respect to x on both sides, we get
\[
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {5a{e^{5x}} - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ = }}\dfrac{{d\left( {5a{e^{5x}}} \right)}}{{dx}}{\text{ + }}\dfrac{{d\left( { - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ }} = 25a{e^{5x}} + 25b{e^{ - 5x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25\left( {a{e^{5x}} + b{e^{ - 5x}}} \right){\text{ }} \to {\text{(3)}} \\
\]
Using equation (1) in equation (3), we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25y\]
Therefore, the above equation represents the differential equation for $y = a{e^{5x}} + b{e^{ - 5x}}$.
Hence, option A is correct.
Note: In these types of problems, one function is given consisting of dependent variable (like here in this case, the dependent variable is y) as well as independent variable (like here in this case, the independent variable is x) and the differential equation of this function can easily be obtained by forming the relation which will not contain any constant.
Complete step-by-step answer:
Given function is $y = a{e^{5x}} + b{e^{ - 5x}}{\text{ }} \to {\text{(1)}}$
Differentiating the equation (1) with respect to x on both sides, we get
$
\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{e^{5x}} + b{e^{ - 5x}}} \right)}}{{dx}} = \dfrac{{d\left( {a{e^{5x}}} \right)}}{{dx}} + \dfrac{{d\left( {b{e^{ - 5x}}} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5a{e^{5x}} - 5b{e^{ - 5x}}{\text{ }} \to {\text{(2)}} \\
$
Again differentiating the equation (2) with respect to x on both sides, we get
\[
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {5a{e^{5x}} - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ = }}\dfrac{{d\left( {5a{e^{5x}}} \right)}}{{dx}}{\text{ + }}\dfrac{{d\left( { - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ }} = 25a{e^{5x}} + 25b{e^{ - 5x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25\left( {a{e^{5x}} + b{e^{ - 5x}}} \right){\text{ }} \to {\text{(3)}} \\
\]
Using equation (1) in equation (3), we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25y\]
Therefore, the above equation represents the differential equation for $y = a{e^{5x}} + b{e^{ - 5x}}$.
Hence, option A is correct.
Note: In these types of problems, one function is given consisting of dependent variable (like here in this case, the dependent variable is y) as well as independent variable (like here in this case, the independent variable is x) and the differential equation of this function can easily be obtained by forming the relation which will not contain any constant.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

