
Write the differential equation for $y = a{e^{5x}} + b{e^{ - 5x}}$.
$
{\text{A}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = 25y \\
{\text{B}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = - 25y \\
{\text{C}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = - 5y \\
{\text{D}}{\text{. }}\dfrac{{{d^2}y}}{{d{x^2}}} = 5y \\
$
Answer
620.7k+ views
Hint: Here, we will proceed by differentiating the given function (which is in terms of x) with respect to x twice and then see which of the given options gives the same obtained differential equation.
Complete step-by-step answer:
Given function is $y = a{e^{5x}} + b{e^{ - 5x}}{\text{ }} \to {\text{(1)}}$
Differentiating the equation (1) with respect to x on both sides, we get
$
\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{e^{5x}} + b{e^{ - 5x}}} \right)}}{{dx}} = \dfrac{{d\left( {a{e^{5x}}} \right)}}{{dx}} + \dfrac{{d\left( {b{e^{ - 5x}}} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5a{e^{5x}} - 5b{e^{ - 5x}}{\text{ }} \to {\text{(2)}} \\
$
Again differentiating the equation (2) with respect to x on both sides, we get
\[
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {5a{e^{5x}} - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ = }}\dfrac{{d\left( {5a{e^{5x}}} \right)}}{{dx}}{\text{ + }}\dfrac{{d\left( { - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ }} = 25a{e^{5x}} + 25b{e^{ - 5x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25\left( {a{e^{5x}} + b{e^{ - 5x}}} \right){\text{ }} \to {\text{(3)}} \\
\]
Using equation (1) in equation (3), we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25y\]
Therefore, the above equation represents the differential equation for $y = a{e^{5x}} + b{e^{ - 5x}}$.
Hence, option A is correct.
Note: In these types of problems, one function is given consisting of dependent variable (like here in this case, the dependent variable is y) as well as independent variable (like here in this case, the independent variable is x) and the differential equation of this function can easily be obtained by forming the relation which will not contain any constant.
Complete step-by-step answer:
Given function is $y = a{e^{5x}} + b{e^{ - 5x}}{\text{ }} \to {\text{(1)}}$
Differentiating the equation (1) with respect to x on both sides, we get
$
\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{e^{5x}} + b{e^{ - 5x}}} \right)}}{{dx}} = \dfrac{{d\left( {a{e^{5x}}} \right)}}{{dx}} + \dfrac{{d\left( {b{e^{ - 5x}}} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5a{e^{5x}} - 5b{e^{ - 5x}}{\text{ }} \to {\text{(2)}} \\
$
Again differentiating the equation (2) with respect to x on both sides, we get
\[
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {5a{e^{5x}} - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ = }}\dfrac{{d\left( {5a{e^{5x}}} \right)}}{{dx}}{\text{ + }}\dfrac{{d\left( { - 5b{e^{ - 5x}}} \right)}}{{dx}}{\text{ }} = 25a{e^{5x}} + 25b{e^{ - 5x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25\left( {a{e^{5x}} + b{e^{ - 5x}}} \right){\text{ }} \to {\text{(3)}} \\
\]
Using equation (1) in equation (3), we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 25y\]
Therefore, the above equation represents the differential equation for $y = a{e^{5x}} + b{e^{ - 5x}}$.
Hence, option A is correct.
Note: In these types of problems, one function is given consisting of dependent variable (like here in this case, the dependent variable is y) as well as independent variable (like here in this case, the independent variable is x) and the differential equation of this function can easily be obtained by forming the relation which will not contain any constant.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

