
Write down a unit vector in XY-plane, making an angle of ${{30}^{\circ }}$ with the
positive direction of x-axis.
Answer
621.6k+ views
Hint: If a unit vector is making an angle $\theta $ with the positive direction of x-axis, then it’s component along the x-axis is $\cos \theta $ and it’s component along the positive y-axis is $\sin\theta $. This unit vector will be written as $\cos \theta \widehat{i}+\sin \theta \widehat{j}$.
Before proceeding with the question, we must know the formula that will be required to solve this question. In vectors, if a unit vector is making an angle $\theta $ with the positive x-axis, then the vector can be written as $\cos \theta \widehat{i}+\sin \theta \widehat{j}$. The x component of this vector is $\cos \theta $ and the y component of this vector is $\sin \theta $.
In the question, we have to write down the unit vector making an angle ${{30}^{\circ }}$ with the positive x-axis.
The x component of this vector will be $\cos {{30}^{\circ }}$ and the y component of this vector will be $\sin {{30}^{\circ }}$. So, this unit vector which is making an angle ${{30}^{\circ }}$ with the positive x-axis can be written as \[\cos {{30}^{\circ }}\widehat{i}+\sin {{30}^{\circ }}\widehat{j}\].
From trigonometry, we have $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\sin {{30}^{\circ
}}=\dfrac{1}{2}$. Substituting these values in the above vector, we get,
$\dfrac{\sqrt{3}}{2}\widehat{i}+\dfrac{1}{2}\widehat{j}$
There is one more possible vector that can make an angle of ${{30}^{\circ }}$ with the positive x-axis.
That vector is as shown below,
The x component of this vector will be $\cos {{30}^{\circ }}$ and the y component of this vector will be $\sin {{30}^{\circ }}$. But in this vector, the y component will be along the negative y-axis. So, this unit vector which is making an angle ${{30}^{\circ }}$ with the positive x-axis can be written as
\[\cos {{30}^{\circ }}\widehat{i}-\sin {{30}^{\circ }}\widehat{j}\].
From trigonometry, we have $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\sin {{30}^{\circ
}}=\dfrac{1}{2}$. Substituting these values in the above vector, we get,
$\dfrac{\sqrt{3}}{2}\widehat{i}-\dfrac{1}{2}\widehat{j}$
So, the two possible answers are $\dfrac{\sqrt{3}}{2}\widehat{i}+\dfrac{1}{2}\widehat{j}$ and $\dfrac{\sqrt{3}}{2}\widehat{i}-\dfrac{1}{2}\widehat{j}$.
Note: In this question, we were given a unit vector which is making an angle of ${{30}^{\circ }}$ with the positive x-axis. We wrote this vector by using the formula $\cos \theta \widehat{i}+\sin \theta \widehat{j}$. But in case we are given a vector which is also having a magnitude, let us say $r$and making an angle $\theta $ with the positive x-axis, we will write that vector by using the formula
$r\left( \cos \theta \widehat{i}+\sin \theta \widehat{j} \right)$.
Before proceeding with the question, we must know the formula that will be required to solve this question. In vectors, if a unit vector is making an angle $\theta $ with the positive x-axis, then the vector can be written as $\cos \theta \widehat{i}+\sin \theta \widehat{j}$. The x component of this vector is $\cos \theta $ and the y component of this vector is $\sin \theta $.
In the question, we have to write down the unit vector making an angle ${{30}^{\circ }}$ with the positive x-axis.
The x component of this vector will be $\cos {{30}^{\circ }}$ and the y component of this vector will be $\sin {{30}^{\circ }}$. So, this unit vector which is making an angle ${{30}^{\circ }}$ with the positive x-axis can be written as \[\cos {{30}^{\circ }}\widehat{i}+\sin {{30}^{\circ }}\widehat{j}\].
From trigonometry, we have $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\sin {{30}^{\circ
}}=\dfrac{1}{2}$. Substituting these values in the above vector, we get,
$\dfrac{\sqrt{3}}{2}\widehat{i}+\dfrac{1}{2}\widehat{j}$
There is one more possible vector that can make an angle of ${{30}^{\circ }}$ with the positive x-axis.
That vector is as shown below,
The x component of this vector will be $\cos {{30}^{\circ }}$ and the y component of this vector will be $\sin {{30}^{\circ }}$. But in this vector, the y component will be along the negative y-axis. So, this unit vector which is making an angle ${{30}^{\circ }}$ with the positive x-axis can be written as
\[\cos {{30}^{\circ }}\widehat{i}-\sin {{30}^{\circ }}\widehat{j}\].
From trigonometry, we have $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and $\sin {{30}^{\circ
}}=\dfrac{1}{2}$. Substituting these values in the above vector, we get,
$\dfrac{\sqrt{3}}{2}\widehat{i}-\dfrac{1}{2}\widehat{j}$
So, the two possible answers are $\dfrac{\sqrt{3}}{2}\widehat{i}+\dfrac{1}{2}\widehat{j}$ and $\dfrac{\sqrt{3}}{2}\widehat{i}-\dfrac{1}{2}\widehat{j}$.
Note: In this question, we were given a unit vector which is making an angle of ${{30}^{\circ }}$ with the positive x-axis. We wrote this vector by using the formula $\cos \theta \widehat{i}+\sin \theta \widehat{j}$. But in case we are given a vector which is also having a magnitude, let us say $r$and making an angle $\theta $ with the positive x-axis, we will write that vector by using the formula
$r\left( \cos \theta \widehat{i}+\sin \theta \widehat{j} \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

