Answer
Verified
393.3k+ views
Hint: To find the range of given function other than the given range we will plot its graph and check its value in other points. Firstly we will draw a graph of a given function then we will see under what range its value falls. Then we will take a range accordingly and get our desired answer.
Complete step by step answer:
The function given to us is as follows:
$f\left( x \right)={{\sin }^{-1}}x$
The range is provided to us as follows:
$\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
We will find value of the function in this range as follows:
So at $x=-\dfrac{\pi }{2}$ we get the value as:
$\begin{align}
& f\left( \dfrac{\pi }{2} \right)={{\sin }^{-1}}\left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow f\left( \dfrac{\pi }{2} \right)=-{{\sin }^{-1}}\left( \dfrac{\pi }{2} \right) \\
& \Rightarrow f\left( \dfrac{\pi }{2} \right)=-1 \\
\end{align}$
So at $x=\dfrac{\pi }{2}$ we get the value as:
$\begin{align}
& f\left( \dfrac{\pi }{2} \right)={{\sin }^{-1}}\left( \dfrac{\pi }{2} \right) \\
& \Rightarrow f\left( \dfrac{\pi }{2} \right)=1 \\
\end{align}$
So the value of function $f\left( x \right)={{\sin }^{-1}}x$ lies in $\left[ -1,1 \right]$
We get the graph of the function as below:
So we have to take a range that gives the value under the above graph.
So we can take the range as $\left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right]$
Hence range of $f\left( x \right)={{\sin }^{-1}}x$ other than $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ is $\left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right]$
Note: Trigonometric is a branch of mathematics that studies the relation between the side lengths and the angles of a triangle. There are six types of trigonometric functions which are sine, cosine, tangent, secant, cosecant and cotangent. As the six trigonometric functions are periodic in nature they are not injective and hence they are invertible by restricting the domain of the function. The graph of the inverse of the sine function is like a reflection over the line $y=x$ of the sine function. Sometimes we write the inverse function as $\arcsin \left( x \right)$ because the superscript $-1$ is not an exponent so to avoid any confusion a different notation can be used.
Complete step by step answer:
The function given to us is as follows:
$f\left( x \right)={{\sin }^{-1}}x$
The range is provided to us as follows:
$\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
We will find value of the function in this range as follows:
So at $x=-\dfrac{\pi }{2}$ we get the value as:
$\begin{align}
& f\left( \dfrac{\pi }{2} \right)={{\sin }^{-1}}\left( -\dfrac{\pi }{2} \right) \\
& \Rightarrow f\left( \dfrac{\pi }{2} \right)=-{{\sin }^{-1}}\left( \dfrac{\pi }{2} \right) \\
& \Rightarrow f\left( \dfrac{\pi }{2} \right)=-1 \\
\end{align}$
So at $x=\dfrac{\pi }{2}$ we get the value as:
$\begin{align}
& f\left( \dfrac{\pi }{2} \right)={{\sin }^{-1}}\left( \dfrac{\pi }{2} \right) \\
& \Rightarrow f\left( \dfrac{\pi }{2} \right)=1 \\
\end{align}$
So the value of function $f\left( x \right)={{\sin }^{-1}}x$ lies in $\left[ -1,1 \right]$
We get the graph of the function as below:
So we have to take a range that gives the value under the above graph.
So we can take the range as $\left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right]$
Hence range of $f\left( x \right)={{\sin }^{-1}}x$ other than $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ is $\left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right]$
Note: Trigonometric is a branch of mathematics that studies the relation between the side lengths and the angles of a triangle. There are six types of trigonometric functions which are sine, cosine, tangent, secant, cosecant and cotangent. As the six trigonometric functions are periodic in nature they are not injective and hence they are invertible by restricting the domain of the function. The graph of the inverse of the sine function is like a reflection over the line $y=x$ of the sine function. Sometimes we write the inverse function as $\arcsin \left( x \right)$ because the superscript $-1$ is not an exponent so to avoid any confusion a different notation can be used.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which of the following is the capital of the union class 9 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Name the metals of the coins Tanka Shashgani and Jital class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life