
Which one of the following options is correct?
A. \[{\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }\] are in GP
B. \[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\] are in GP
C. \[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\] are in GP
D. None of these
Answer
232.8k+ views
Hint: In order to solve this problem, we will apply the formula \[{b^2} = ac\] in every option. And then put the values of trigonometric angles from the trigonometric table.
After doing this, we observe that which option correctly fit in the formula \[{b^2} = ac\].
Formula Used: 1) We will use \[{b^2} = ac\] formula, to check that the given numbers are in G.P. or not.
2) We will also use the values of trigonometric angles from the trigonometric table:
\[\sin {30^ \circ } = \dfrac{1}{2}\] , \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}\] , \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\cos {60^ \circ } = \dfrac{1}{2}\]
\[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] , \[\tan {45^ \circ } = 1\]and \[\tan {60^ \circ } = \sqrt 3 \]
Complete step by step solution: Remember that three numbers \[a\],\[b\], and \[c\]will be in G.P. if \[{b^2} = ac\].
First, we will check \[{\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }\] are in G.P. or not.
\[{\left( {{{\sin }^2}{{45}^ \circ }} \right)^2} = {\sin ^2}{30^ \circ } \times {\sin ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{1}{2}} \right)^2} \times {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{1}{4} \times \dfrac{3}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{{\mathop{\rm Sin}\nolimits} ^2}{30^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{45^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{60^ \circ }\]are not in GP.
Now we will check \[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\cos }^2}{{45}^ \circ }} \right)^2} = {\cos ^2}{30^ \circ } \times {\cos ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{3}{4} \times \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are not in GP.
Further, we will check \[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\tan }^2}{{45}^ \circ }} \right)^2} = {\tan ^2}{30^ \circ } \times {\tan ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{1^2}} \right]^2} = {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \times {\left( {\sqrt 3 } \right)^2}\]
\[ \Rightarrow 1 = \dfrac{1}{3} \times 3\]
\[ \Rightarrow 1 = 1\]
As a result, we can say that\[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in GP.
Option ‘C’ is correct
Note: It is important to develop intuition so that we can possibly gain a sense of what might be the most likely answer to a problem.
After doing this, we observe that which option correctly fit in the formula \[{b^2} = ac\].
Formula Used: 1) We will use \[{b^2} = ac\] formula, to check that the given numbers are in G.P. or not.
2) We will also use the values of trigonometric angles from the trigonometric table:
\[\sin {30^ \circ } = \dfrac{1}{2}\] , \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}\] , \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\cos {60^ \circ } = \dfrac{1}{2}\]
\[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] , \[\tan {45^ \circ } = 1\]and \[\tan {60^ \circ } = \sqrt 3 \]
Complete step by step solution: Remember that three numbers \[a\],\[b\], and \[c\]will be in G.P. if \[{b^2} = ac\].
First, we will check \[{\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }\] are in G.P. or not.
\[{\left( {{{\sin }^2}{{45}^ \circ }} \right)^2} = {\sin ^2}{30^ \circ } \times {\sin ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{1}{2}} \right)^2} \times {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{1}{4} \times \dfrac{3}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{{\mathop{\rm Sin}\nolimits} ^2}{30^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{45^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{60^ \circ }\]are not in GP.
Now we will check \[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\cos }^2}{{45}^ \circ }} \right)^2} = {\cos ^2}{30^ \circ } \times {\cos ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{3}{4} \times \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are not in GP.
Further, we will check \[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\tan }^2}{{45}^ \circ }} \right)^2} = {\tan ^2}{30^ \circ } \times {\tan ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{1^2}} \right]^2} = {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \times {\left( {\sqrt 3 } \right)^2}\]
\[ \Rightarrow 1 = \dfrac{1}{3} \times 3\]
\[ \Rightarrow 1 = 1\]
As a result, we can say that\[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in GP.
Option ‘C’ is correct
Note: It is important to develop intuition so that we can possibly gain a sense of what might be the most likely answer to a problem.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

