Answer
Verified
419.4k+ views
Hint: The chemical reactions are classified on the basis of the dependency on the number of reactants in the chemical reaction. If the rate of reaction depends only on the concentration of one reactant, then it is a first-order reaction.
Complete answer:
The chemical reactions are classified on the basis of the dependency on the number of reactants in the chemical reaction. This is measured by the order of the reaction and the rate of the reaction tells the change in concentration of the reactant or product. These are classified as:
If the order of the reaction is zero then the rate of reaction doesn’t depend on any concentration of the reactant.
If the order of the reaction is first then the rate of reaction depends only on the concentration of one reactant.
If the rate of reaction is second then the rate of reaction depends on the concentration of two reactants. And so on.
Suppose a reaction:
$A\to Products$
So in this reaction, the rate of reaction for first order reaction will be:
$\text{Rate of reaction = k }\!\![\!\!\text{ A }\!\!]\!\!\text{ }$
So given in the question, k = rate constant; r = rate of reaction; c = concentration of reaction, so the above equation will be:
$\text{r = k x c}$
$k=\dfrac{r}{c}$
So the rate constant is the ratio of the rate of reaction to the concentration of the reactant.
Therefore, the correct answer is an option (d)- $k=\dfrac{r}{c}$.
Note:
We can calculate the rate constant for the first-order reaction by the formula $k=\dfrac{2.303}{t}\log \dfrac{{{[A]}_{o}}}{[A]}$ where t is the time taken, ${{[A]}_{o}}$ is the initial concentration of the reactant, and $[A]$ is the final concentration of the reactant.
Complete answer:
The chemical reactions are classified on the basis of the dependency on the number of reactants in the chemical reaction. This is measured by the order of the reaction and the rate of the reaction tells the change in concentration of the reactant or product. These are classified as:
If the order of the reaction is zero then the rate of reaction doesn’t depend on any concentration of the reactant.
If the order of the reaction is first then the rate of reaction depends only on the concentration of one reactant.
If the rate of reaction is second then the rate of reaction depends on the concentration of two reactants. And so on.
Suppose a reaction:
$A\to Products$
So in this reaction, the rate of reaction for first order reaction will be:
$\text{Rate of reaction = k }\!\![\!\!\text{ A }\!\!]\!\!\text{ }$
So given in the question, k = rate constant; r = rate of reaction; c = concentration of reaction, so the above equation will be:
$\text{r = k x c}$
$k=\dfrac{r}{c}$
So the rate constant is the ratio of the rate of reaction to the concentration of the reactant.
Therefore, the correct answer is an option (d)- $k=\dfrac{r}{c}$.
Note:
We can calculate the rate constant for the first-order reaction by the formula $k=\dfrac{2.303}{t}\log \dfrac{{{[A]}_{o}}}{[A]}$ where t is the time taken, ${{[A]}_{o}}$ is the initial concentration of the reactant, and $[A]$ is the final concentration of the reactant.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Casparian strips are present in of the root A Epiblema class 12 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE