Answer

Verified

449.7k+ views

Hint: To solve this problem we will use differentiation and differentiate the given equation so that it matches to one of the given options.

Complete step-by-step answer:

Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.

Here we have applied the chain rule to find the differentiation.

Now taking out m common from the above equation, we get

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)

Now, again differentiating equation (1) both sides with respect to x, we get

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)

Again, taking out m common from equation (2), we gat

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)

As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$

Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$

So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.

Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.

Complete step-by-step answer:

Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.

Here we have applied the chain rule to find the differentiation.

Now taking out m common from the above equation, we get

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)

Now, again differentiating equation (1) both sides with respect to x, we get

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)

Again, taking out m common from equation (2), we gat

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)

As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$

Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get

$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$

So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.

Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE