Answer
Verified
493.8k+ views
Hint: To solve this problem we will use differentiation and differentiate the given equation so that it matches to one of the given options.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it