
Which of the following differential equations are satisfied by ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ ?
A. $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}{\text{ my = 0}}$
B. $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ - my = 0}}$
C. $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
D. $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ + }}{{\text{m}}^2}{\text{y = 0}}$
Answer
620.1k+ views
Hint: To solve this problem we will use differentiation and differentiate the given equation so that it matches to one of the given options.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

