Which of the following differential equations are satisfied by ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ ?
A. $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}{\text{ my = 0}}$
B. $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ - my = 0}}$
C. $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
D. $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ + }}{{\text{m}}^2}{\text{y = 0}}$
Last updated date: 29th Mar 2023
•
Total views: 306.3k
•
Views today: 8.83k
Answer
306.3k+ views
Hint: To solve this problem we will use differentiation and differentiate the given equation so that it matches to one of the given options.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Complete step-by-step answer:
Given equation is ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}}$ as $\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}$.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}})$ …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}})$ ……… (2)
Again, taking out m common from equation (2), we gat
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}})$ ………. (3)
As ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ so putting value of y in the equation (3)
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}$
Moving the term ${{\text{m}}^2}{\text{y}}$ to the left – hand side, we get
$\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$
So, ${\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}}$ satisfy the differential equation $\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}$ i.e. option (C) is the correct answer.
Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
