
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: \[y-\cos y=x:\left( y\sin y+\cos y+x \right)y'=y\].
Answer
553.2k+ views
Hint: Differentiate the function \[y-\cos y=x\] both the sides with respect to x. Use the formula: - \[\dfrac{d\cos x}{dx}=-\sin x\], to simplify the derivative. Now, substitute the value of x and y’, i.e., \[\dfrac{dy}{dx}\], in the expression present on the L.H.S. of the differential equation. Simplify this side and check whether we are getting y or not. If we are getting y then \[y-\cos y=x\] is a solution of the given differential equation otherwise not.
Complete step-by-step answer:
Here, we have been provided with the differential equation: \[\left( y\sin y+\cos y+x \right)y'=y\], and we have been asked to check whether \[y-\cos y=x\] is a solution of the given differential equation or not.
Now, if \[y-\cos y=x\] is a solution of the given differential equation then it must satisfy the differential equation. Now, substituting the value of x from \[x=y-\cos y\] in the L.H.S. of the given differential equation, we get,
\[\Rightarrow L.H.S.=\left( y\sin y+\cos y+y-\cos y \right)y'\]
Cancelling the like terms, we get,
\[\Rightarrow L.H.S.=\left( y\sin y+y \right)y'\]
\[\Rightarrow L.H.S.=y\left( 1+\sin y \right)y'\] - (1)
Now, we need to substitute the value of y’, i.e., \[\dfrac{dy}{dx}\], in the above expression. So, let us find its value.
\[\because x=y-\cos y\]
Differentiating both the sides with respect to the variable x, we get,
\[\Rightarrow 1=\dfrac{dy}{dx}-\dfrac{d\cos y}{dx}\]
Using chain rule of differentiation, we get,
\[\begin{align}
& \Rightarrow 1=\dfrac{dy}{dx}-\dfrac{d\left[ \cos y \right]}{dy}\times \dfrac{dy}{dx} \\
& \Rightarrow 1=y'-\dfrac{d\left[ \cos y \right]}{dy}\times y' \\
\end{align}\]
We know that \[\dfrac{d\left[ \cos y \right]}{dy}=-\sin y\], so we get,
\[\begin{align}
& \Rightarrow 1=y'+\sin y\times y' \\
& \Rightarrow 1=y'\left( 1+\sin y \right) \\
& \Rightarrow y'=\left( \dfrac{1}{1+\sin y} \right) \\
\end{align}\]
So, substituting the value of y’ in the equation (1), we get,
\[\Rightarrow L.H.S.=y\left( 1+\sin y \right)\times \left( \dfrac{1}{1+\sin y} \right)\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow L.H.S.=y \\
& \Rightarrow L.H.S.=R.H.S. \\
\end{align}\]
Hence, we can conclude that \[y-\cos y=x\] is a solution of the given differential equation.
Note: One may note that there can be other methods also to solve the above question. What we can do is we will solve the given differential equation by some properties of the exact differential equation and ILATE rule. Here, the constant of indefinite integration ‘c’ will be introduced. Now, we will find if the value of ‘c’ can be 1 or not because the obtained solution will be \[cy-\cos y=x\]. The condition c = 1 will be possible if \[y\left( \dfrac{\pi }{2} \right)=\left( \dfrac{\pi }{2} \right)\]. But remember that here we are not asked to solve the equation but we need to check only so it will be better if you will use the approach we have used in the solution.
Complete step-by-step answer:
Here, we have been provided with the differential equation: \[\left( y\sin y+\cos y+x \right)y'=y\], and we have been asked to check whether \[y-\cos y=x\] is a solution of the given differential equation or not.
Now, if \[y-\cos y=x\] is a solution of the given differential equation then it must satisfy the differential equation. Now, substituting the value of x from \[x=y-\cos y\] in the L.H.S. of the given differential equation, we get,
\[\Rightarrow L.H.S.=\left( y\sin y+\cos y+y-\cos y \right)y'\]
Cancelling the like terms, we get,
\[\Rightarrow L.H.S.=\left( y\sin y+y \right)y'\]
\[\Rightarrow L.H.S.=y\left( 1+\sin y \right)y'\] - (1)
Now, we need to substitute the value of y’, i.e., \[\dfrac{dy}{dx}\], in the above expression. So, let us find its value.
\[\because x=y-\cos y\]
Differentiating both the sides with respect to the variable x, we get,
\[\Rightarrow 1=\dfrac{dy}{dx}-\dfrac{d\cos y}{dx}\]
Using chain rule of differentiation, we get,
\[\begin{align}
& \Rightarrow 1=\dfrac{dy}{dx}-\dfrac{d\left[ \cos y \right]}{dy}\times \dfrac{dy}{dx} \\
& \Rightarrow 1=y'-\dfrac{d\left[ \cos y \right]}{dy}\times y' \\
\end{align}\]
We know that \[\dfrac{d\left[ \cos y \right]}{dy}=-\sin y\], so we get,
\[\begin{align}
& \Rightarrow 1=y'+\sin y\times y' \\
& \Rightarrow 1=y'\left( 1+\sin y \right) \\
& \Rightarrow y'=\left( \dfrac{1}{1+\sin y} \right) \\
\end{align}\]
So, substituting the value of y’ in the equation (1), we get,
\[\Rightarrow L.H.S.=y\left( 1+\sin y \right)\times \left( \dfrac{1}{1+\sin y} \right)\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow L.H.S.=y \\
& \Rightarrow L.H.S.=R.H.S. \\
\end{align}\]
Hence, we can conclude that \[y-\cos y=x\] is a solution of the given differential equation.
Note: One may note that there can be other methods also to solve the above question. What we can do is we will solve the given differential equation by some properties of the exact differential equation and ILATE rule. Here, the constant of indefinite integration ‘c’ will be introduced. Now, we will find if the value of ‘c’ can be 1 or not because the obtained solution will be \[cy-\cos y=x\]. The condition c = 1 will be possible if \[y\left( \dfrac{\pi }{2} \right)=\left( \dfrac{\pi }{2} \right)\]. But remember that here we are not asked to solve the equation but we need to check only so it will be better if you will use the approach we have used in the solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

