
What is the value of the integral \[\int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} \]?
A. \[\dfrac{{{\pi ^2}}}{8}\]
B. \[\dfrac{{{\pi ^2}}}{8} - 1\]
C. \[\dfrac{{{\pi ^2}}}{8} - 2\]
D. None of these
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by using the subtraction rule of integration. Then, solve both integrals by using the standard formulas. In the end, substitute the upper and the lower limit values in the equation and get the required answer.
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b {\sin xdx} = \left[ { - \cos x} \right]_a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} \].
Let’s simplify the given integral by using the integration rule.
\[\int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \int\limits_0^{\dfrac{\pi }{2}} {xdx} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\sin x} \right]dx} \]
Solve the right-hand side.
Apply the power rule \[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] for the first term and \[\int\limits_a^b {\sin xdx} = \left[ { - \cos x} \right]_a^b\] for the second term.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{x^{1 + 1}}}}{{1 + 1}}} \right]_0^{\dfrac{\pi }{2}} - \left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{x^2}}}{2}} \right]_0^{\dfrac{\pi }{2}} + \left[ {\cos x} \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{{\left( {\dfrac{\pi }{2}} \right)}^2}}}{2} - \dfrac{{{{\left( 0 \right)}^2}}}{2}} \right] + \left[ {\cos \dfrac{\pi }{2} - \cos 0} \right]\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{\pi ^2}}}{8} - 0} \right] + \left[ {0 - 1} \right]\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \dfrac{{{\pi ^2}}}{8} - 1\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used: \[\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx \pm } \int\limits_a^b {g\left( x \right)dx} \]
\[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b {\sin xdx} = \left[ { - \cos x} \right]_a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} \].
Let’s simplify the given integral by using the integration rule.
\[\int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \int\limits_0^{\dfrac{\pi }{2}} {xdx} - \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\sin x} \right]dx} \]
Solve the right-hand side.
Apply the power rule \[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] for the first term and \[\int\limits_a^b {\sin xdx} = \left[ { - \cos x} \right]_a^b\] for the second term.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{x^{1 + 1}}}}{{1 + 1}}} \right]_0^{\dfrac{\pi }{2}} - \left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{x^2}}}{2}} \right]_0^{\dfrac{\pi }{2}} + \left[ {\cos x} \right]_0^{\dfrac{\pi }{2}}\]
Apply the upper and lower limits.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{{\left( {\dfrac{\pi }{2}} \right)}^2}}}{2} - \dfrac{{{{\left( 0 \right)}^2}}}{2}} \right] + \left[ {\cos \dfrac{\pi }{2} - \cos 0} \right]\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \left[ {\dfrac{{{\pi ^2}}}{8} - 0} \right] + \left[ {0 - 1} \right]\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left\{ {x - \left[ {\sin x} \right]} \right\}dx} = \dfrac{{{\pi ^2}}}{8} - 1\]
Option ‘B’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

