
What is the value of the integral \[\int\limits_{ - 1}^1 {{{\sin }^3}x{{\cos }^2}xdx} \]?
A. 0
B. 1
C. \[\dfrac{1}{2}\]
D. 2
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, check whether the function present in the given integral is an odd or an even function by calculating the value of \[f\left( { - x} \right)\]. If the function is odd, then apply the property of the definite integral for the odd function. If the function is even, then apply the property of the definite integral for the even function and solve the integral to get the required answer.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution: The given definite integral is \[\int\limits_{ - 1}^1 {{{\sin }^3}x{{\cos }^2}xdx} \].
Let consider,
\[f\left( x \right) = {\sin ^3}x{\cos ^2}x\]
Now let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = {\sin ^3}\left( { - x} \right){\cos ^2}\left( { - x} \right)\]
\[ \Rightarrow f\left( { - x} \right) = - {\sin ^3}x{\cos ^2}x\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, \[f\left( x \right)\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - 1}^1 {{{\sin }^3}x{{\cos }^2}xdx} = 0\]
Option ‘A’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check whether the given trigonometric function is odd or even.
Formula Used: \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution: The given definite integral is \[\int\limits_{ - 1}^1 {{{\sin }^3}x{{\cos }^2}xdx} \].
Let consider,
\[f\left( x \right) = {\sin ^3}x{\cos ^2}x\]
Now let’s calculate the value of \[f\left( { - x} \right)\].
\[f\left( { - x} \right) = {\sin ^3}\left( { - x} \right){\cos ^2}\left( { - x} \right)\]
\[ \Rightarrow f\left( { - x} \right) = - {\sin ^3}x{\cos ^2}x\]
\[ \Rightarrow f\left( { - x} \right) = - f\left( x \right)\]
Therefore, \[f\left( x \right)\] is an odd function.
Now apply the property of the definite integral \[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function.
We get,
\[\int\limits_{ - 1}^1 {{{\sin }^3}x{{\cos }^2}xdx} = 0\]
Option ‘A’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check whether the given trigonometric function is odd or even.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

