# What is the value of $\sqrt {12} $ by Newton- Raphson’s method after the first iteration?

Answer

Verified

283.8k+ views

**Hint:**We know that Newton- Raphson is a root finding algorithm which produces successively better approximations for roots or zero of real valued functions. We know that the iterative equation of Newton Raphson method is ${x_{n + 1}} = {x_n} - \dfrac{{f({x_n})}}{{f'({x_n})}}$. We should know that the first iteration is ${x_0}$, thus the formula is ${x_1} = {x_0} - \dfrac{{f({x_0})}}{{f'({x_0})}}$.

**Complete step by step solution:**

Here we have to find the value of $\sqrt {12} $ by Newton- Raphson’s method after the first iteration.

Let us assume $x = \sqrt {12} $. By squaring both the sides we have ${x^2} = {(\sqrt {12} )^2}$.

So we have ${x^2} = 12$. By taking the constant term to the left side of the equation we have

${x^2} - 12 = 0$.

Now the formula of the iterative equation of Newton Raphson method is ${x_{n + 1}} = {x_n} - \dfrac{{f({x_n})}}{{f'({x_n})}}$.

If $f(x) = {x^2} - 12$, then we need the derivative so we have $f'(x) = 2x$.

We will substitute $f(x) = {x^2} - 12$ in the formula, and it can be written as ${x_{n + 1}} = {x_n} - \dfrac{{f({x^2}_n - 12)}}{{2{x_n}}}$.

Now we have to find the first iteration i.e. $n = 0$, so we have ${x_1} = {x_0} - \dfrac{{f({x^2}_0 - 12)}}{{2{x_0}}} = \dfrac{{x_0^2 + 12}}{{2{x_0}}}$.

We know that $3 < \sqrt {12} < 4$ or it can be written as $\sqrt 9 < \sqrt {12} < \sqrt {16} $.

From this our first iteration i.e. ${x_0} = 3$. By putting this in the formula we have $\dfrac{{{3^2} + 12}}{{2 \times 3}} = \dfrac{{9 + 12}}{6}$.

It gives us the value $3.5$.

Now we put $3.5$ in the equation i.e. ${x_1} = 3.5 - \dfrac{{{{(3.5)}^2} - 12}}{{2 \times 3.5}}$.

On simplifying we have $3.5 - \dfrac{{12.25 - 12}}{7} \Rightarrow 3.5 - 0.0357 = 3.4643$.

**Hence the required value is ${x_1} = 3.4643$.**

**Note:**

We should note that the formula of first iteration is ${x_1} = {x_0} - \dfrac{{x_0^2 - A}}{{2{x_0}}} = \dfrac{{x_0^2 + A}}{{2{x_0}}}$, so if we have a guess ${x_0}$. We can get the more accurate value by calculating $\dfrac{{x_0^2 + A}}{{2{x_0}}}$, where $A$ is the number which square root we are trying to find as we did in the above solution. We should know that ${x_0}$ is our initial guess and ${x_1}$ is a more accurate one.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts

Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE