Answer

Verified

334.2k+ views

**Hint:**We know that Newton- Raphson is a root finding algorithm which produces successively better approximations for roots or zero of real valued functions. We know that the iterative equation of Newton Raphson method is ${x_{n + 1}} = {x_n} - \dfrac{{f({x_n})}}{{f'({x_n})}}$. We should know that the first iteration is ${x_0}$, thus the formula is ${x_1} = {x_0} - \dfrac{{f({x_0})}}{{f'({x_0})}}$.

**Complete step by step solution:**

Here we have to find the value of $\sqrt {12} $ by Newton- Raphson’s method after the first iteration.

Let us assume $x = \sqrt {12} $. By squaring both the sides we have ${x^2} = {(\sqrt {12} )^2}$.

So we have ${x^2} = 12$. By taking the constant term to the left side of the equation we have

${x^2} - 12 = 0$.

Now the formula of the iterative equation of Newton Raphson method is ${x_{n + 1}} = {x_n} - \dfrac{{f({x_n})}}{{f'({x_n})}}$.

If $f(x) = {x^2} - 12$, then we need the derivative so we have $f'(x) = 2x$.

We will substitute $f(x) = {x^2} - 12$ in the formula, and it can be written as ${x_{n + 1}} = {x_n} - \dfrac{{f({x^2}_n - 12)}}{{2{x_n}}}$.

Now we have to find the first iteration i.e. $n = 0$, so we have ${x_1} = {x_0} - \dfrac{{f({x^2}_0 - 12)}}{{2{x_0}}} = \dfrac{{x_0^2 + 12}}{{2{x_0}}}$.

We know that $3 < \sqrt {12} < 4$ or it can be written as $\sqrt 9 < \sqrt {12} < \sqrt {16} $.

From this our first iteration i.e. ${x_0} = 3$. By putting this in the formula we have $\dfrac{{{3^2} + 12}}{{2 \times 3}} = \dfrac{{9 + 12}}{6}$.

It gives us the value $3.5$.

Now we put $3.5$ in the equation i.e. ${x_1} = 3.5 - \dfrac{{{{(3.5)}^2} - 12}}{{2 \times 3.5}}$.

On simplifying we have $3.5 - \dfrac{{12.25 - 12}}{7} \Rightarrow 3.5 - 0.0357 = 3.4643$.

**Hence the required value is ${x_1} = 3.4643$.**

**Note:**

We should note that the formula of first iteration is ${x_1} = {x_0} - \dfrac{{x_0^2 - A}}{{2{x_0}}} = \dfrac{{x_0^2 + A}}{{2{x_0}}}$, so if we have a guess ${x_0}$. We can get the more accurate value by calculating $\dfrac{{x_0^2 + A}}{{2{x_0}}}$, where $A$ is the number which square root we are trying to find as we did in the above solution. We should know that ${x_0}$ is our initial guess and ${x_1}$ is a more accurate one.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram showing the external features of fish class 11 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE