
Using Rolle’s Theorem, the equation ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$ has at least one root between 0 and 1, if
$
{\text{A}}{\text{. }}\dfrac{{{{\text{a}}_0}}}{{\text{n}}}{\text{ + }}\dfrac{{{{\text{a}}_1}}}{{{\text{n - 1}}}} + ...... + {{\text{a}}_{{\text{n - 1}}}} = 0 \\
{\text{B}}{\text{. }}\dfrac{{{{\text{a}}_0}}}{{{\text{n - 1}}}}{\text{ + }}\dfrac{{{{\text{a}}_1}}}{{{\text{n - 2}}}} + ...... + {{\text{a}}_{{\text{n - 2}}}} = 0 \\
{\text{C}}{\text{. n}}{{\text{a}}_0} + \left( {{\text{n - 1}}} \right){{\text{a}}_1} + ...... + {{\text{a}}_{{\text{n - 1}}}} = 0 \\
{\text{D}}{\text{. }}\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}}{\text{ + }}\dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ...... + {{\text{a}}_{\text{n}}} = 0 \\
$
Answer
618.9k+ views
Hint – Observing the equation given in the question we consider a polynomial function, and check its properties. Then we check if our polynomial function holds the conditions of Rolle’s Theorem to determine the answer.
Complete step-by-step answer:
Given data, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Consider the function f defined by
f(x) = ${{\text{a}}_0}\dfrac{{{{\text{x}}^{{\text{n + 1}}}}}}{{{\text{n + 1}}}} + {{\text{a}}_{\text{n}}}\dfrac{{{{\text{x}}^{\text{n}}}}}{{\text{n}}} + ....... + {{\text{a}}_{{\text{n - 1}}}}\dfrac{{{{\text{x}}^2}}}{2} + {{\text{a}}_{\text{n}}}{\text{x}}$
Since f(x) is a polynomial, it is continuous and differentiable for all x.
f(x) is continuous in the closed interval [0, 1] and differentiable in the open interval (0, 1).
Also f(0) = 0.
And let us say,
f(1) = $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$
i.e. f(0) = f(1)
Thus, all three conditions of Rolle’s Theorem are satisfied. Hence there is at least one value of x in the open interval (0, 1) where ${\text{f'}}$(x) = 0.
i.e. ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Hence, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$ has one root between 0 and 1 if $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$.
Option D is the correct answer.
Note – In order to solve this type of questions the key is to assume a polynomial function and verify if it holds all the required conditions.
The Three Conditions of Rolle’s Theorem, for a function f(x) are,
(a and b are the first and last of the values x takes)
f is continuous on the closed interval [a, b], f is differentiable on the open interval (a, b) and f(a) = f(b).
Complete step-by-step answer:
Given data, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Consider the function f defined by
f(x) = ${{\text{a}}_0}\dfrac{{{{\text{x}}^{{\text{n + 1}}}}}}{{{\text{n + 1}}}} + {{\text{a}}_{\text{n}}}\dfrac{{{{\text{x}}^{\text{n}}}}}{{\text{n}}} + ....... + {{\text{a}}_{{\text{n - 1}}}}\dfrac{{{{\text{x}}^2}}}{2} + {{\text{a}}_{\text{n}}}{\text{x}}$
Since f(x) is a polynomial, it is continuous and differentiable for all x.
f(x) is continuous in the closed interval [0, 1] and differentiable in the open interval (0, 1).
Also f(0) = 0.
And let us say,
f(1) = $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$
i.e. f(0) = f(1)
Thus, all three conditions of Rolle’s Theorem are satisfied. Hence there is at least one value of x in the open interval (0, 1) where ${\text{f'}}$(x) = 0.
i.e. ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$.
Hence, ${{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0$ has one root between 0 and 1 if $\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0$.
Option D is the correct answer.
Note – In order to solve this type of questions the key is to assume a polynomial function and verify if it holds all the required conditions.
The Three Conditions of Rolle’s Theorem, for a function f(x) are,
(a and b are the first and last of the values x takes)
f is continuous on the closed interval [a, b], f is differentiable on the open interval (a, b) and f(a) = f(b).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

