
Using Kirchhoff’s rules determine the value of unknown resistance $R$ in the circuit so that no current flows through $4\Omega $ resistance. Also find the potential between A and D.
Answer
547.2k+ views
Hint: As a convention, for voltage sources, when moving from negative to positive add voltage when moving from positive to negative subtract voltage. For resistors, when moving in the same direction as conventional current, subtract voltage across the resistor but when moving in the opposite direction add voltage across the resistor.
Formula used: $\sum V = 0$ where $V$ is the voltage around a loop, $\sum {{I_{in}} = \sum {{I_{out}}} } $ where ${I_{in}}$ is the current flowing into a node and ${I_{out}}$ is the current flowing out of the node.
Complete step by step answer
To solve, let us apply Kirchhoff’s voltage rule around the loop BAFEB, we have
$\Rightarrow 9 - {I_2}(1) - {I_1}(1) - {I_2} - 6 = 0 $
$\Rightarrow 9 - 6 = 2{I_1} + {I_2} = 3$
Since ${I_2} = 0$, then
$\Rightarrow {I_1} = \dfrac{3}{2} $
$\Rightarrow 1.5A $
At node E,
$\Rightarrow {I_1} = {I_2} + {I_3} $
$\Rightarrow {I_1} = {I_3} $
Since ${I_2} = 0$, using the Kirchhoff’s voltage law on loop BAFDCB we get
$\Rightarrow 9 - {I_1} - {I_1} - {I_1}R - 3 = 0 $
$\Rightarrow 6 - 2{I_1} = {I_1}R $
Making $R$ subject of the formula and inserting the values for ${I_1}$ we have
$\Rightarrow R = \dfrac{{6 - 2\left( {1.5} \right)}}{{1.5}} $
$\Rightarrow \dfrac{3}{{1.5}} $
$\Rightarrow 2\Omega $
The voltage between A and D is simply the voltage remained if we apply Kirchhoff’s law around a loop DCAFD but stop at point A. i.e.
$\Rightarrow {V_{DA}} = - {I_1}R - 3 + 9 = - {I_1}R + 6$
Inputting values of ${I_1}$ and $R$ again and solving, we get
$\Rightarrow {V_{DA}} = - 1.5\left( 2 \right) + 6 $
$\Rightarrow - 3 + 6 $
$\Rightarrow {V_{DA}} = 3V$
Hence, the required answer is 3V.
Additional Information
Kirchhoff’s rule is a physical principle which is more fundamental than Ohm’s law as it was derived from the principle of conservation of charge. In fact, it works with other elements besides resistors such as capacitors and inductors. It can also be used to analyze low frequency ac current.
Note
Alternatively, to find ${V_{DA}}$ we can take the path DFA instead of the path DCA as done above. Thus, we have,
$\Rightarrow {V_{DA}} = {I_1} + {I_1} = 2{I_1}$
The voltage difference across the $1\Omega $ resistors because we move in the direction opposite to the assumed conventional flow.
Substituting the value of ${I_1}$ in the above equation we get,
$\Rightarrow {V_{DA}} = 2\left( {1.5} \right) = 3V$
$\therefore {V_{DA}} = 3V$
Formula used: $\sum V = 0$ where $V$ is the voltage around a loop, $\sum {{I_{in}} = \sum {{I_{out}}} } $ where ${I_{in}}$ is the current flowing into a node and ${I_{out}}$ is the current flowing out of the node.
Complete step by step answer
To solve, let us apply Kirchhoff’s voltage rule around the loop BAFEB, we have
$\Rightarrow 9 - {I_2}(1) - {I_1}(1) - {I_2} - 6 = 0 $
$\Rightarrow 9 - 6 = 2{I_1} + {I_2} = 3$
Since ${I_2} = 0$, then
$\Rightarrow {I_1} = \dfrac{3}{2} $
$\Rightarrow 1.5A $
At node E,
$\Rightarrow {I_1} = {I_2} + {I_3} $
$\Rightarrow {I_1} = {I_3} $
Since ${I_2} = 0$, using the Kirchhoff’s voltage law on loop BAFDCB we get
$\Rightarrow 9 - {I_1} - {I_1} - {I_1}R - 3 = 0 $
$\Rightarrow 6 - 2{I_1} = {I_1}R $
Making $R$ subject of the formula and inserting the values for ${I_1}$ we have
$\Rightarrow R = \dfrac{{6 - 2\left( {1.5} \right)}}{{1.5}} $
$\Rightarrow \dfrac{3}{{1.5}} $
$\Rightarrow 2\Omega $
The voltage between A and D is simply the voltage remained if we apply Kirchhoff’s law around a loop DCAFD but stop at point A. i.e.
$\Rightarrow {V_{DA}} = - {I_1}R - 3 + 9 = - {I_1}R + 6$
Inputting values of ${I_1}$ and $R$ again and solving, we get
$\Rightarrow {V_{DA}} = - 1.5\left( 2 \right) + 6 $
$\Rightarrow - 3 + 6 $
$\Rightarrow {V_{DA}} = 3V$
Hence, the required answer is 3V.
Additional Information
Kirchhoff’s rule is a physical principle which is more fundamental than Ohm’s law as it was derived from the principle of conservation of charge. In fact, it works with other elements besides resistors such as capacitors and inductors. It can also be used to analyze low frequency ac current.
Note
Alternatively, to find ${V_{DA}}$ we can take the path DFA instead of the path DCA as done above. Thus, we have,
$\Rightarrow {V_{DA}} = {I_1} + {I_1} = 2{I_1}$
The voltage difference across the $1\Omega $ resistors because we move in the direction opposite to the assumed conventional flow.
Substituting the value of ${I_1}$ in the above equation we get,
$\Rightarrow {V_{DA}} = 2\left( {1.5} \right) = 3V$
$\therefore {V_{DA}} = 3V$
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

