Answer
Verified
467.4k+ views
Hint – In this question we have to find the inverse of the given matrix using elementary transformations. Elementary transformations means that we start with a row or a column and by applying various transformations on the chosen entity either rows or columns we try to make maximum possible zeroes. Use this concept along with A=IA where I is the identity matrix, to get the inverse.
Complete step-by-step answer:
Given matrix is
$\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
Now we have to find out the inverse of this matrix using elementary transformations,
Let,
$A = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
As we know A is also written as $A = IA$, where I is an identity matrix.
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
$
\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A \\
$
Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,
${R_1} \to {R_1} - {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{3 - 2}&{10 - 7} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{0 - 1} \\
0&1
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
0&1
\end{array}} \right]A$
Now apply ${R_2} \to {R_2} - 2{R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
{2 - 2}&{7 - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{0 - 2}&{1 + 2}
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 2}&3
\end{array}} \right]A$
Now apply ${R_1} \to {R_1} - 3{R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{3 - 3} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + 6}&{ - 1 - 9} \\
{ - 2}&3
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]A$
Now shift A to L.H.S
$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
So, this is the required A inverse using elementary transformations.
So, this is the required answer.
Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.
Complete step-by-step answer:
Given matrix is
$\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
Now we have to find out the inverse of this matrix using elementary transformations,
Let,
$A = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
As we know A is also written as $A = IA$, where I is an identity matrix.
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
$
\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A \\
$
Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,
${R_1} \to {R_1} - {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{3 - 2}&{10 - 7} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{0 - 1} \\
0&1
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
0&1
\end{array}} \right]A$
Now apply ${R_2} \to {R_2} - 2{R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
{2 - 2}&{7 - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{0 - 2}&{1 + 2}
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 2}&3
\end{array}} \right]A$
Now apply ${R_1} \to {R_1} - 3{R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{3 - 3} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + 6}&{ - 1 - 9} \\
{ - 2}&3
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]A$
Now shift A to L.H.S
$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
So, this is the required A inverse using elementary transformations.
So, this is the required answer.
Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE