
Using elementary transformation, find the inverse of the matrix $\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$.
Answer
601.8k+ views
Hint – In this question we have to find the inverse of the given matrix using elementary transformations. Elementary transformations means that we start with a row or a column and by applying various transformations on the chosen entity either rows or columns we try to make maximum possible zeroes. Use this concept along with A=IA where I is the identity matrix, to get the inverse.
Complete step-by-step answer:
Given matrix is
$\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
Now we have to find out the inverse of this matrix using elementary transformations,
Let,
$A = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
As we know A is also written as $A = IA$, where I is an identity matrix.
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
$
\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A \\
$
Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,
${R_1} \to {R_1} - {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{3 - 2}&{10 - 7} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{0 - 1} \\
0&1
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
0&1
\end{array}} \right]A$
Now apply ${R_2} \to {R_2} - 2{R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
{2 - 2}&{7 - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{0 - 2}&{1 + 2}
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 2}&3
\end{array}} \right]A$
Now apply ${R_1} \to {R_1} - 3{R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{3 - 3} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + 6}&{ - 1 - 9} \\
{ - 2}&3
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]A$
Now shift A to L.H.S
$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
So, this is the required A inverse using elementary transformations.
So, this is the required answer.
Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.
Complete step-by-step answer:
Given matrix is
$\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
Now we have to find out the inverse of this matrix using elementary transformations,
Let,
$A = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
As we know A is also written as $A = IA$, where I is an identity matrix.
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
$
\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A \\
$
Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,
${R_1} \to {R_1} - {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{3 - 2}&{10 - 7} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{0 - 1} \\
0&1
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
0&1
\end{array}} \right]A$
Now apply ${R_2} \to {R_2} - 2{R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
{2 - 2}&{7 - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{0 - 2}&{1 + 2}
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 2}&3
\end{array}} \right]A$
Now apply ${R_1} \to {R_1} - 3{R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{3 - 3} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + 6}&{ - 1 - 9} \\
{ - 2}&3
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]A$
Now shift A to L.H.S
$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
So, this is the required A inverse using elementary transformations.
So, this is the required answer.
Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

