# Using elementary transformation, find the inverse of the matrix $\left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$.

Last updated date: 22nd Mar 2023

•

Total views: 304.8k

•

Views today: 5.84k

Answer

Verified

304.8k+ views

Hint – In this question we have to find the inverse of the given matrix using elementary transformations. Elementary transformations means that we start with a row or a column and by applying various transformations on the chosen entity either rows or columns we try to make maximum possible zeroes. Use this concept along with A=IA where I is the identity matrix, to get the inverse.

Complete step-by-step answer:

Given matrix is

$\left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

Now we have to find out the inverse of this matrix using elementary transformations,

Let,

$A = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

As we know A is also written as $A = IA$, where I is an identity matrix.

$I = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]$

$

\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] \\

\Rightarrow \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]A \\

$

Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,

${R_1} \to {R_1} - {R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{3 - 2}&{10 - 7} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{0 - 1} \\

0&1

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

0&1

\end{array}} \right]A$

Now apply ${R_2} \to {R_2} - 2{R_1}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

{2 - 2}&{7 - 6}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{0 - 2}&{1 + 2}

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{ - 2}&3

\end{array}} \right]A$

Now apply ${R_1} \to {R_1} - 3{R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{3 - 3} \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 + 6}&{ - 1 - 9} \\

{ - 2}&3

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]A$

Now shift A to L.H.S

$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

So, this is the required A inverse using elementary transformations.

So, this is the required answer.

Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.

Complete step-by-step answer:

Given matrix is

$\left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

Now we have to find out the inverse of this matrix using elementary transformations,

Let,

$A = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

As we know A is also written as $A = IA$, where I is an identity matrix.

$I = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]$

$

\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] \\

\Rightarrow \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]A \\

$

Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,

${R_1} \to {R_1} - {R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{3 - 2}&{10 - 7} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{0 - 1} \\

0&1

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

0&1

\end{array}} \right]A$

Now apply ${R_2} \to {R_2} - 2{R_1}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

{2 - 2}&{7 - 6}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{0 - 2}&{1 + 2}

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{ - 2}&3

\end{array}} \right]A$

Now apply ${R_1} \to {R_1} - 3{R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{3 - 3} \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 + 6}&{ - 1 - 9} \\

{ - 2}&3

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]A$

Now shift A to L.H.S

$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

So, this is the required A inverse using elementary transformations.

So, this is the required answer.

Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?