# Using elementary transformation, find the inverse of the matrix $\left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$.

Answer

Verified

362.1k+ views

Hint – In this question we have to find the inverse of the given matrix using elementary transformations. Elementary transformations means that we start with a row or a column and by applying various transformations on the chosen entity either rows or columns we try to make maximum possible zeroes. Use this concept along with A=IA where I is the identity matrix, to get the inverse.

Complete step-by-step answer:

Given matrix is

$\left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

Now we have to find out the inverse of this matrix using elementary transformations,

Let,

$A = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

As we know A is also written as $A = IA$, where I is an identity matrix.

$I = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]$

$

\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] \\

\Rightarrow \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]A \\

$

Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,

${R_1} \to {R_1} - {R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{3 - 2}&{10 - 7} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{0 - 1} \\

0&1

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

0&1

\end{array}} \right]A$

Now apply ${R_2} \to {R_2} - 2{R_1}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

{2 - 2}&{7 - 6}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{0 - 2}&{1 + 2}

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{ - 2}&3

\end{array}} \right]A$

Now apply ${R_1} \to {R_1} - 3{R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{3 - 3} \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 + 6}&{ - 1 - 9} \\

{ - 2}&3

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]A$

Now shift A to L.H.S

$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

So, this is the required A inverse using elementary transformations.

So, this is the required answer.

Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.

Complete step-by-step answer:

Given matrix is

$\left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

Now we have to find out the inverse of this matrix using elementary transformations,

Let,

$A = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right]$

As we know A is also written as $A = IA$, where I is an identity matrix.

$I = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]$

$

\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] \\

\Rightarrow \left[ {\begin{array}{*{20}{c}}

3&{10} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right]A \\

$

Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,

${R_1} \to {R_1} - {R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{3 - 2}&{10 - 7} \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{0 - 1} \\

0&1

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

2&7

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

0&1

\end{array}} \right]A$

Now apply ${R_2} \to {R_2} - 2{R_1}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

{2 - 2}&{7 - 6}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{0 - 2}&{1 + 2}

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&3 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

1&{ - 1} \\

{ - 2}&3

\end{array}} \right]A$

Now apply ${R_1} \to {R_1} - 3{R_2}$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

{1 - 0}&{3 - 3} \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{1 + 6}&{ - 1 - 9} \\

{ - 2}&3

\end{array}} \right]A$

$ \Rightarrow \left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]A$

Now shift A to L.H.S

$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}

1&0 \\

0&1

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}

7&{ - 10} \\

{ - 2}&3

\end{array}} \right]$

So, this is the required A inverse using elementary transformations.

So, this is the required answer.

Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.

Last updated date: 27th Sep 2023

•

Total views: 362.1k

•

Views today: 9.62k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers