
Use the properties of determinant, show that
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = {\left( {1 - {x^3}} \right)^2}$
Answer
543k+ views
Hint: In this question apply determinant rule without opening the determinant doing this we can easily solve the determinant so, first of all add second and third row in first row.
Complete step by step answer:
Given determinant is
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = {\left( {1 - {x^3}} \right)^2}$
Consider L.H.S
$ = \left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now simplify the determinant using determinant properties and apply,
${R_1} \to {R_1} + {R_2} + {R_3}$, we have
$ = \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&{1 + x + {x^2}}&{1 + x + {x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Noe take $\left( {1 + x + {x^2}} \right)$ outside the determinant from first row we have,
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now again simplify the determinant using determinant properties and apply,
$\left( {{R_2} \to {R_2} - {R_1}} \right),{\text{ }}\left( {{R_3} \to {R_3} - {R_1}} \right)$, we have
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{x^2}}&{1 - {x^2}}&{x - {x^2}} \\
x&{{x^2} - x}&{1 - x}
\end{array}} \right|$
Now expand the determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {1\left| {\begin{array}{*{20}{c}}
{1 - {x^2}}&{x - {x^2}} \\
{{x^2} - x}&{1 - x}
\end{array}} \right| - 0 + 0} \right]$
Now again expand the mini determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - {x^2}} \right)\left( {1 - x} \right) - \left( {{x^2} - x} \right)\left( {x - {x^2}} \right)} \right]$
Now as we know that $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) - {x^2}\left( {x - 1} \right)\left( {1 - x} \right)} \right] \\
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) + {x^2}\left( {1 - x} \right)\left( {1 - x} \right)} \right] \\
$
Now take ${\left( {1 - x} \right)^2}$ common we have
$
= \left( {1 + x + {x^2}} \right){\left( {1 - x} \right)^2}\left[ {\left( {1 + x} \right) + {x^2}} \right] \\
= {\left( {1 + x + {x^2}} \right)^2}{\left( {1 - x} \right)^2} \\
= {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} \\
$
Now as we know that $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$ \Rightarrow {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} = {\left( {1 - {x^3}} \right)^2}$
= R.H.S
Hence proved
Note: In such types of questions solve the determinant without opening the determinant if we direct open the determinant it will lead us to a very complex situation that will not help us so, first simplify the determinant using determinant rules as above, then expand the determinant as above and simplify, we will get the required answer.
Given determinant is
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = {\left( {1 - {x^3}} \right)^2}$
Consider L.H.S
$ = \left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now simplify the determinant using determinant properties and apply,
${R_1} \to {R_1} + {R_2} + {R_3}$, we have
$ = \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&{1 + x + {x^2}}&{1 + x + {x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Noe take $\left( {1 + x + {x^2}} \right)$ outside the determinant from first row we have,
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now again simplify the determinant using determinant properties and apply,
$\left( {{R_2} \to {R_2} - {R_1}} \right),{\text{ }}\left( {{R_3} \to {R_3} - {R_1}} \right)$, we have
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{x^2}}&{1 - {x^2}}&{x - {x^2}} \\
x&{{x^2} - x}&{1 - x}
\end{array}} \right|$
Now expand the determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {1\left| {\begin{array}{*{20}{c}}
{1 - {x^2}}&{x - {x^2}} \\
{{x^2} - x}&{1 - x}
\end{array}} \right| - 0 + 0} \right]$
Now again expand the mini determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - {x^2}} \right)\left( {1 - x} \right) - \left( {{x^2} - x} \right)\left( {x - {x^2}} \right)} \right]$
Now as we know that $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) - {x^2}\left( {x - 1} \right)\left( {1 - x} \right)} \right] \\
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) + {x^2}\left( {1 - x} \right)\left( {1 - x} \right)} \right] \\
$
Now take ${\left( {1 - x} \right)^2}$ common we have
$
= \left( {1 + x + {x^2}} \right){\left( {1 - x} \right)^2}\left[ {\left( {1 + x} \right) + {x^2}} \right] \\
= {\left( {1 + x + {x^2}} \right)^2}{\left( {1 - x} \right)^2} \\
= {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} \\
$
Now as we know that $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$ \Rightarrow {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} = {\left( {1 - {x^3}} \right)^2}$
= R.H.S
Hence proved
Note: In such types of questions solve the determinant without opening the determinant if we direct open the determinant it will lead us to a very complex situation that will not help us so, first simplify the determinant using determinant rules as above, then expand the determinant as above and simplify, we will get the required answer.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
