
Use the properties of determinant, show that
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = {\left( {1 - {x^3}} \right)^2}$
Answer
621.3k+ views
Hint: In this question apply determinant rule without opening the determinant doing this we can easily solve the determinant so, first of all add second and third row in first row.
Complete step by step answer:
Given determinant is
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = {\left( {1 - {x^3}} \right)^2}$
Consider L.H.S
$ = \left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now simplify the determinant using determinant properties and apply,
${R_1} \to {R_1} + {R_2} + {R_3}$, we have
$ = \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&{1 + x + {x^2}}&{1 + x + {x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Noe take $\left( {1 + x + {x^2}} \right)$ outside the determinant from first row we have,
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now again simplify the determinant using determinant properties and apply,
$\left( {{R_2} \to {R_2} - {R_1}} \right),{\text{ }}\left( {{R_3} \to {R_3} - {R_1}} \right)$, we have
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{x^2}}&{1 - {x^2}}&{x - {x^2}} \\
x&{{x^2} - x}&{1 - x}
\end{array}} \right|$
Now expand the determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {1\left| {\begin{array}{*{20}{c}}
{1 - {x^2}}&{x - {x^2}} \\
{{x^2} - x}&{1 - x}
\end{array}} \right| - 0 + 0} \right]$
Now again expand the mini determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - {x^2}} \right)\left( {1 - x} \right) - \left( {{x^2} - x} \right)\left( {x - {x^2}} \right)} \right]$
Now as we know that $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) - {x^2}\left( {x - 1} \right)\left( {1 - x} \right)} \right] \\
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) + {x^2}\left( {1 - x} \right)\left( {1 - x} \right)} \right] \\
$
Now take ${\left( {1 - x} \right)^2}$ common we have
$
= \left( {1 + x + {x^2}} \right){\left( {1 - x} \right)^2}\left[ {\left( {1 + x} \right) + {x^2}} \right] \\
= {\left( {1 + x + {x^2}} \right)^2}{\left( {1 - x} \right)^2} \\
= {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} \\
$
Now as we know that $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$ \Rightarrow {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} = {\left( {1 - {x^3}} \right)^2}$
= R.H.S
Hence proved
Note: In such types of questions solve the determinant without opening the determinant if we direct open the determinant it will lead us to a very complex situation that will not help us so, first simplify the determinant using determinant rules as above, then expand the determinant as above and simplify, we will get the required answer.
Given determinant is
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = {\left( {1 - {x^3}} \right)^2}$
Consider L.H.S
$ = \left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now simplify the determinant using determinant properties and apply,
${R_1} \to {R_1} + {R_2} + {R_3}$, we have
$ = \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&{1 + x + {x^2}}&{1 + x + {x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Noe take $\left( {1 + x + {x^2}} \right)$ outside the determinant from first row we have,
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&1&1 \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right|$
Now again simplify the determinant using determinant properties and apply,
$\left( {{R_2} \to {R_2} - {R_1}} \right),{\text{ }}\left( {{R_3} \to {R_3} - {R_1}} \right)$, we have
$ = \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&0 \\
{{x^2}}&{1 - {x^2}}&{x - {x^2}} \\
x&{{x^2} - x}&{1 - x}
\end{array}} \right|$
Now expand the determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {1\left| {\begin{array}{*{20}{c}}
{1 - {x^2}}&{x - {x^2}} \\
{{x^2} - x}&{1 - x}
\end{array}} \right| - 0 + 0} \right]$
Now again expand the mini determinant we have,
$ = \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - {x^2}} \right)\left( {1 - x} \right) - \left( {{x^2} - x} \right)\left( {x - {x^2}} \right)} \right]$
Now as we know that $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) - {x^2}\left( {x - 1} \right)\left( {1 - x} \right)} \right] \\
= \left( {1 + x + {x^2}} \right)\left[ {\left( {1 - x} \right)\left( {1 + x} \right)\left( {1 - x} \right) + {x^2}\left( {1 - x} \right)\left( {1 - x} \right)} \right] \\
$
Now take ${\left( {1 - x} \right)^2}$ common we have
$
= \left( {1 + x + {x^2}} \right){\left( {1 - x} \right)^2}\left[ {\left( {1 + x} \right) + {x^2}} \right] \\
= {\left( {1 + x + {x^2}} \right)^2}{\left( {1 - x} \right)^2} \\
= {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} \\
$
Now as we know that $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$, so use this property in above equation we have,
Here $\left( {a = 1,{\text{ }}b = x} \right)$
$ \Rightarrow {\left( {\left( {1 + x + {x^2}} \right)\left( {1 - x} \right)} \right)^2} = {\left( {1 - {x^3}} \right)^2}$
= R.H.S
Hence proved
Note: In such types of questions solve the determinant without opening the determinant if we direct open the determinant it will lead us to a very complex situation that will not help us so, first simplify the determinant using determinant rules as above, then expand the determinant as above and simplify, we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

