
How to use the Fundamental Theorem of Calculus to evaluate?
Answer
528.3k+ views
Hint:
Here we will show how to use Fundamental Theorem of Calculus. Firstly we will state the theorem of calculus. Then we will give an example and solve it using the statement of the theorem to show how to use the theorem. There are two categories of Fundamental Theorem of Calculus which is used to solve an integral function.
Complete step by step solution:
Fundamental Theorem of Calculus is divided into two parts:
First Fundamental Theorem of Calculus states that if a function $f$ is continuous on $\left[ {a,b} \right]$ then the function defined by
$S\left( x \right) = \int\limits_a^x {f\left( t \right)dt} $
Is continuous on $\left[ {a,b} \right]$ and differential on $\left( {a,b} \right)$and $S'\left( x \right) = f\left( x \right)$ which can be written as,
$\dfrac{d}{{dx}}\int\limits_a^x {f\left( t \right)dt = f\left( x \right)} $
Example- Find the derivative of $k\left( x \right) = \int\limits_2^x {\left( {{4^t} + t} \right)dt} $
As we can see the function inside the integral is continuous so comparing the example with the theorem we get,
$S\left( x \right) = k\left( x \right)$ And $f\left( x \right) = {4^t} + t$
Therefore,
$k'\left( x \right) = {4^x} + x$
Second Fundamental Theorem of Calculus states that integral of a function over some interval can be computed by using any one of the infinite anti-derivatives it has. So if $f$ is continuous on $\left[ {a,b} \right]$ then the function defined by
$\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)$
Where, $F$ is an anti-derivative of$f$.
Example- Evaluate $\int\limits_1^2 {{x^4}dx} $
Comparing the above example with the theorem we get,
$f\left( x \right) = {x^4}$ And also
$\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)$….$\left( 1 \right)$
As, $F$ is an anti-derivative of $f$ so on Integrating $f$ we get,
$F\left( x \right) = \dfrac{{{x^{4 + 1}}}}{{4 + 1}} = \dfrac{{{x^5}}}{5}$
Now, $a = 1,b = 2$ so value of anti-derivative is,
$F\left( 1 \right) = \dfrac{{{1^5}}}{5} = \dfrac{1}{5}$
$F\left( 2 \right) = \dfrac{{{2^5}}}{5} = \dfrac{{32}}{5}$
Substituting the above value in equation $\left( 1 \right)$ we get,
$\int\limits_a^b {f\left( x \right)dx} = \dfrac{{32}}{5} - \dfrac{1}{5}$
Taking L.C.M on right side we get,
$\Rightarrow \int\limits_a^b {f\left( x \right)dx} = \dfrac{{32 - 1}}{5} \\
\Rightarrow \int\limits_a^b {f\left( x \right)dx} = \dfrac{{31}}{5} \\ $
So, $\int\limits_1^2 {{x^4}dx} = \dfrac{{31}}{5}$
Note:
The Fundamental Theorem of Calculus is the main medium to study calculus. This is used to find the relation between the differentiation and integration. The first part of the theorem deals with the anti-derivative of a derivative while the second part deals with the relation between indefinite integrals and antiderivatives.
Here we will show how to use Fundamental Theorem of Calculus. Firstly we will state the theorem of calculus. Then we will give an example and solve it using the statement of the theorem to show how to use the theorem. There are two categories of Fundamental Theorem of Calculus which is used to solve an integral function.
Complete step by step solution:
Fundamental Theorem of Calculus is divided into two parts:
First Fundamental Theorem of Calculus states that if a function $f$ is continuous on $\left[ {a,b} \right]$ then the function defined by
$S\left( x \right) = \int\limits_a^x {f\left( t \right)dt} $
Is continuous on $\left[ {a,b} \right]$ and differential on $\left( {a,b} \right)$and $S'\left( x \right) = f\left( x \right)$ which can be written as,
$\dfrac{d}{{dx}}\int\limits_a^x {f\left( t \right)dt = f\left( x \right)} $
Example- Find the derivative of $k\left( x \right) = \int\limits_2^x {\left( {{4^t} + t} \right)dt} $
As we can see the function inside the integral is continuous so comparing the example with the theorem we get,
$S\left( x \right) = k\left( x \right)$ And $f\left( x \right) = {4^t} + t$
Therefore,
$k'\left( x \right) = {4^x} + x$
Second Fundamental Theorem of Calculus states that integral of a function over some interval can be computed by using any one of the infinite anti-derivatives it has. So if $f$ is continuous on $\left[ {a,b} \right]$ then the function defined by
$\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)$
Where, $F$ is an anti-derivative of$f$.
Example- Evaluate $\int\limits_1^2 {{x^4}dx} $
Comparing the above example with the theorem we get,
$f\left( x \right) = {x^4}$ And also
$\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)$….$\left( 1 \right)$
As, $F$ is an anti-derivative of $f$ so on Integrating $f$ we get,
$F\left( x \right) = \dfrac{{{x^{4 + 1}}}}{{4 + 1}} = \dfrac{{{x^5}}}{5}$
Now, $a = 1,b = 2$ so value of anti-derivative is,
$F\left( 1 \right) = \dfrac{{{1^5}}}{5} = \dfrac{1}{5}$
$F\left( 2 \right) = \dfrac{{{2^5}}}{5} = \dfrac{{32}}{5}$
Substituting the above value in equation $\left( 1 \right)$ we get,
$\int\limits_a^b {f\left( x \right)dx} = \dfrac{{32}}{5} - \dfrac{1}{5}$
Taking L.C.M on right side we get,
$\Rightarrow \int\limits_a^b {f\left( x \right)dx} = \dfrac{{32 - 1}}{5} \\
\Rightarrow \int\limits_a^b {f\left( x \right)dx} = \dfrac{{31}}{5} \\ $
So, $\int\limits_1^2 {{x^4}dx} = \dfrac{{31}}{5}$
Note:
The Fundamental Theorem of Calculus is the main medium to study calculus. This is used to find the relation between the differentiation and integration. The first part of the theorem deals with the anti-derivative of a derivative while the second part deals with the relation between indefinite integrals and antiderivatives.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

