Answer
Verified
424.5k+ views
Hint: In this question, we need to find the equation of the tangent to the curve \[{x^2} + 2xy - {y^2} + x = 39\] at the point \[\left( {5,9} \right)\], this is done by differentiating with respect to x the given equation and then obtain the equation of the tangent line by substituting the points.
Complete Step By Step solution:
In this question we have given the equation as \[{x^2} + 2xy - {y^2} + x = 39\] and we need to find the equation of the tangent line to the given curve.
First we will differentiate the above equation with respect to x as,
\[
\Rightarrow \dfrac{d}{{dx}}\left( {{x^2} + 2xy - {y^2} + x} \right) = \dfrac{d}{{dx}}\left( {39} \right) \\
\Rightarrow 2x + 2y + 2x\dfrac{{dy}}{{dx}} - 2y\dfrac{{dy}}{{dx}} + 1 = 0 \\
\Rightarrow \left( {2x - 2y} \right)\dfrac{{dy}}{{dx}} = - 1 - 2x - 2y \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2x + 2y}}{{2y - 2x}} \\
\]
As we can see in the above calculation the term \[2xy\] is differentiated by the chain rule.
The formula to determine the equation of the tangent line is given below.
\[y = {y_0} + y'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\]
For the above equation to calculate the value of \[y'\left( {{x_0}} \right)\] we will substitute the initial condition in the equation as,
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2\left( 5 \right) + 2\left( 9 \right)}}{{2\left( 9 \right) - 2\left( 5 \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 10 + 18}}{{18 - 10}} \\
\]
After simplification we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{29}}{8}\]
Now we will get the equation for the tangent line obtained by substituting the value of the initial points as shown below.
\[
y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\Rightarrow y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\]
After simplification we will get,
\[\therefore 29x - 8y = 73\]
Thus, the equation \[29x - 8y = 73\] is the equation of the tangent line that is tangent to the equation \[{x^2} + 2xy - {y^2} - x = 39\] at the point \[\left( {5,9} \right)\].
Note:
The process to find the derivative of the function is called differentiation, in differentiation the instantaneous rate of change of function based on the variable. In implicit differentiation each side of the equation with the two variables is differentiated, this is done by treating one of the variables as the other's function.
Complete Step By Step solution:
In this question we have given the equation as \[{x^2} + 2xy - {y^2} + x = 39\] and we need to find the equation of the tangent line to the given curve.
First we will differentiate the above equation with respect to x as,
\[
\Rightarrow \dfrac{d}{{dx}}\left( {{x^2} + 2xy - {y^2} + x} \right) = \dfrac{d}{{dx}}\left( {39} \right) \\
\Rightarrow 2x + 2y + 2x\dfrac{{dy}}{{dx}} - 2y\dfrac{{dy}}{{dx}} + 1 = 0 \\
\Rightarrow \left( {2x - 2y} \right)\dfrac{{dy}}{{dx}} = - 1 - 2x - 2y \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2x + 2y}}{{2y - 2x}} \\
\]
As we can see in the above calculation the term \[2xy\] is differentiated by the chain rule.
The formula to determine the equation of the tangent line is given below.
\[y = {y_0} + y'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\]
For the above equation to calculate the value of \[y'\left( {{x_0}} \right)\] we will substitute the initial condition in the equation as,
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 2\left( 5 \right) + 2\left( 9 \right)}}{{2\left( 9 \right) - 2\left( 5 \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{1 + 10 + 18}}{{18 - 10}} \\
\]
After simplification we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{29}}{8}\]
Now we will get the equation for the tangent line obtained by substituting the value of the initial points as shown below.
\[
y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\Rightarrow y = 9 + \dfrac{{29}}{8}\left( {x - 5} \right) \\
\]
After simplification we will get,
\[\therefore 29x - 8y = 73\]
Thus, the equation \[29x - 8y = 73\] is the equation of the tangent line that is tangent to the equation \[{x^2} + 2xy - {y^2} - x = 39\] at the point \[\left( {5,9} \right)\].
Note:
The process to find the derivative of the function is called differentiation, in differentiation the instantaneous rate of change of function based on the variable. In implicit differentiation each side of the equation with the two variables is differentiated, this is done by treating one of the variables as the other's function.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE