$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]$ , where $\left[ . \right]$ denotes greatest integer function, is equal to
(a) 0
(b) 1
(c) Does not exist
(d) \[\sin 1\]
Last updated date: 21st Mar 2023
•
Total views: 306.3k
•
Views today: 3.85k
Answer
306.3k+ views
Hint: To evaluate the given limit, simplify the function using the formulas related to the greatest integer function and then apply the limits to the given function to get the value of the limit.
We have been provided the function $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]$
We know that the function \[\left[ {} \right]\] stands for greatest integer function. This function rounds down a real number to the nearest integer. This function gives the value of the greatest integer that is less than or equal to the given real number.
We will evaluate the right hand and left hand limit of the given function.
Firstly, we will evaluate the left hand limit of the function.
We know that \[\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\left[ x \right]=a\] and \[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\left[ x \right]=a-1\].
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Now, we will evaluate the left hand side of the limit.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Thus, we get the value of limit as \[\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=1\].
Limit of a function is a fundamental concept in calculus that analyses the behaviour of that function around a point. The notation of a limit has many applications in modern calculus. We can use the limit of a function to check differentiability of the function around any point. We can also use the limit to integrate a function defined over an interval.
When we say that a function has limit L, it means that the function gets closer and closer to the value L around the point at which the limit is applied to.
Answer is Option (b)
Note: To evaluate the value of the limit of the function, it’s necessary to know about the greatest integer function. Simplify the terms involving greatest integer function using some of its properties to evaluate the limit of the function.
We have been provided the function $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]$
We know that the function \[\left[ {} \right]\] stands for greatest integer function. This function rounds down a real number to the nearest integer. This function gives the value of the greatest integer that is less than or equal to the given real number.
We will evaluate the right hand and left hand limit of the given function.
Firstly, we will evaluate the left hand limit of the function.
We know that \[\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\left[ x \right]=a\] and \[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\left[ x \right]=a-1\].
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Now, we will evaluate the left hand side of the limit.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Thus, we get the value of limit as \[\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=1\].
Limit of a function is a fundamental concept in calculus that analyses the behaviour of that function around a point. The notation of a limit has many applications in modern calculus. We can use the limit of a function to check differentiability of the function around any point. We can also use the limit to integrate a function defined over an interval.
When we say that a function has limit L, it means that the function gets closer and closer to the value L around the point at which the limit is applied to.
Answer is Option (b)
Note: To evaluate the value of the limit of the function, it’s necessary to know about the greatest integer function. Simplify the terms involving greatest integer function using some of its properties to evaluate the limit of the function.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
