Answer

Verified

433.5k+ views

Hint: The general equation of tangent at \[\left( a{{t}^{2}},2at \right)\]is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .

The point of intersection of tangents at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given by \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.

We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].

We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.

Now , we will find the equation of tangents at these points.

Now, we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .

So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .

On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get

\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]

And equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as

\[{{t}_{2}}y=x+at_{2}^{2}....\left( ii \right)\]

Now, we need to find the locus of the point of intersection of \[\left( i \right)\]and \[\left( ii \right)\].

Let the point of intersection be \[M\left( h,k \right)\].

Now, from equation\[\left( i \right)\], we have

\[y{{t}_{1}}=x+at_{1}^{2}\]

\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right).....\left( iii \right)\]

We will substitute the value of \[x\] from equation \[(iii)\] in equation \[\left( ii \right)\].

On substituting value of \[x\] from equation\[(iii)\] in equation \[\left( ii \right)\], we get,

\[y{{t}_{2}}={{t}_{1}}y-at_{1}^{2}+at_{2}^{2}\]

\[\Rightarrow y\left( {{t}_{2}}-{{t}_{1}} \right)=a\left( t_{2}^{2}-t_{1}^{2} \right)\]

\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]

Substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]in \[\left( iii \right)\], we get

\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]

\[\Rightarrow x=a\left( {{t}_{1}}{{t}_{2}} \right)\]

So, the point of intersection of tangents \[\left( i \right)\] and \[\left( ii \right)\] is \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\].

Comparing it with\[M\left( h,k \right)\], we get

\[h=a{{t}_{1}}{{t}_{2}}\]

\[\Rightarrow \dfrac{h}{a}={{t}_{1}}{{t}_{2}}.....\left( iv \right)\]

And \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\]

\[\Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}.....\left( v \right)\]

Now, we will consider the point of contact of the fixed tangent be \[C\left( a{{t}^{2}},2at \right)\].

So , the point of intersection of tangent at \[A\] and tangent at \[C\] is \[D\left( at{{t}_{1}},a\left( t+{{t}_{1}} \right) \right)\].

And the point of intersection of tangent at \[B\] and tangent at \[C\] is \[E\left( at{{t}_{2}},a\left( t+{{t}_{2}} \right) \right)\].

Now, in the question it is given that the product of intercept on the fixed tangent is constant.

So, \[CD\times CE=C\]

\[\Rightarrow \sqrt{{{\left( a{{t}^{2}}-at{{t}_{1}} \right)}^{2}}+{{\left( 2at-a{{t}_{1}}-at \right)}^{2}}}\times \sqrt{{{\left( a{{t}^{2}}-at{{t}_{2}} \right)}^{2}}+{{\left( 2at-a{{t}_{2}}-at \right)}^{2}}}=C\]

\[\Rightarrow \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}}\times \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}}=C\]

\[\Rightarrow a\left( t-{{t}_{1}} \right)\sqrt{{{t}^{2}}+1}\times a\left( t-{{t}_{2}} \right)\sqrt{{{t}^{2}}+1}=C\]

\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)=\dfrac{C}{{{a}^{2}}\left( {{t}^{2}}+1 \right)}\]

\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)={{C}_{1}}\] (say)

\[\Rightarrow {{t}^{2}}-\left( {{t}_{1}}+{{t}_{2}} \right)+{{t}_{1}}{{t}_{2}}={{C}_{1}}....\left( vi \right)\]

Substituting \[\left( iv \right)\]and \[\left( v \right)\]in \[\left( vi \right)\], we get

\[{{t}^{2}}-\dfrac{k}{a}+\dfrac{h}{a}={{C}_{1}}\]

\[\Rightarrow h-k=a\left( {{C}_{1}}-{{t}^{2}} \right).......(vii)\]

Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].

So , the locus of \[M\left( h,k \right)\] is given as

\[x-y=a\left( {{C}_{1}}-{{t}^{2}} \right)\] which represents a straight line.

Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .

The point of intersection of tangents at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given by \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.

We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].

We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.

Now , we will find the equation of tangents at these points.

Now, we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .

So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .

On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get

\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]

And equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as

\[{{t}_{2}}y=x+at_{2}^{2}....\left( ii \right)\]

Now, we need to find the locus of the point of intersection of \[\left( i \right)\]and \[\left( ii \right)\].

Let the point of intersection be \[M\left( h,k \right)\].

Now, from equation\[\left( i \right)\], we have

\[y{{t}_{1}}=x+at_{1}^{2}\]

\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right).....\left( iii \right)\]

We will substitute the value of \[x\] from equation \[(iii)\] in equation \[\left( ii \right)\].

On substituting value of \[x\] from equation\[(iii)\] in equation \[\left( ii \right)\], we get,

\[y{{t}_{2}}={{t}_{1}}y-at_{1}^{2}+at_{2}^{2}\]

\[\Rightarrow y\left( {{t}_{2}}-{{t}_{1}} \right)=a\left( t_{2}^{2}-t_{1}^{2} \right)\]

\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]

Substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]in \[\left( iii \right)\], we get

\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]

\[\Rightarrow x=a\left( {{t}_{1}}{{t}_{2}} \right)\]

So, the point of intersection of tangents \[\left( i \right)\] and \[\left( ii \right)\] is \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\].

Comparing it with\[M\left( h,k \right)\], we get

\[h=a{{t}_{1}}{{t}_{2}}\]

\[\Rightarrow \dfrac{h}{a}={{t}_{1}}{{t}_{2}}.....\left( iv \right)\]

And \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\]

\[\Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}.....\left( v \right)\]

Now, we will consider the point of contact of the fixed tangent be \[C\left( a{{t}^{2}},2at \right)\].

So , the point of intersection of tangent at \[A\] and tangent at \[C\] is \[D\left( at{{t}_{1}},a\left( t+{{t}_{1}} \right) \right)\].

And the point of intersection of tangent at \[B\] and tangent at \[C\] is \[E\left( at{{t}_{2}},a\left( t+{{t}_{2}} \right) \right)\].

Now, in the question it is given that the product of intercept on the fixed tangent is constant.

So, \[CD\times CE=C\]

\[\Rightarrow \sqrt{{{\left( a{{t}^{2}}-at{{t}_{1}} \right)}^{2}}+{{\left( 2at-a{{t}_{1}}-at \right)}^{2}}}\times \sqrt{{{\left( a{{t}^{2}}-at{{t}_{2}} \right)}^{2}}+{{\left( 2at-a{{t}_{2}}-at \right)}^{2}}}=C\]

\[\Rightarrow \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}}\times \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}}=C\]

\[\Rightarrow a\left( t-{{t}_{1}} \right)\sqrt{{{t}^{2}}+1}\times a\left( t-{{t}_{2}} \right)\sqrt{{{t}^{2}}+1}=C\]

\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)=\dfrac{C}{{{a}^{2}}\left( {{t}^{2}}+1 \right)}\]

\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)={{C}_{1}}\] (say)

\[\Rightarrow {{t}^{2}}-\left( {{t}_{1}}+{{t}_{2}} \right)+{{t}_{1}}{{t}_{2}}={{C}_{1}}....\left( vi \right)\]

Substituting \[\left( iv \right)\]and \[\left( v \right)\]in \[\left( vi \right)\], we get

\[{{t}^{2}}-\dfrac{k}{a}+\dfrac{h}{a}={{C}_{1}}\]

\[\Rightarrow h-k=a\left( {{C}_{1}}-{{t}^{2}} \right).......(vii)\]

Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].

So , the locus of \[M\left( h,k \right)\] is given as

\[x-y=a\left( {{C}_{1}}-{{t}^{2}} \right)\] which represents a straight line.

Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE